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ABSTRtACT

The reflection of a spherical acoustic wave by a flat impedance

plane is a deceptively simple problem. There is, in fact, no exact

closed-form solution. In practice, approximate methods are employed

to predict the received pressure, the most popular of which relies on

the use of the classical plane wave reflection coefficient, which

ayes to be deficient for grazing angles of incidence.

The primary objective of this study was to derive a more exact
acoask _Ce1

solution to the problem of point-source propagation over a locally-

reacting, iedance or roun ' plsne. This'objective was met with

the derivation of an asymptotic series solution. One of the most

Important features of this solution is that higher-order terms can be

calculated from preceding terms in the series by the use of recursion

formulae, also derived here. Comparing data predicted from this

solution with that from a numerical integration of the exact

expression showed the asymptotic series to be extremely accurate, even

for very low values of the parameter kR. As expected, the plane wave

solution often showed major deviations from the exact integral

solution.

A secondary goal was to incorporate the new propagation solution

into a barrier model so that ground reflections in addition to edge N

diffraction could be accounted for. Only the first term in the

asymptotic ground propagation solution was used for this purpose, ks

it was shown to be sufficiently accurate for many practical cases.

Thus, an Edge-Plus-Images barrier diffraction model was developed in

N...
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'he second phase of this study. The results of preliminary

/---sensitivity tests reported here are very encouraging, and indicate

that the barrier model should afford a higher degree of accuracy than

available with similar models employing the plane wave reflection

coefficient
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CHAPTER I

INTRODUCTION

The problem of spherical wave acoustic propagation over an-

Impedance plane continues to attract attention within the scientific

community, although the results of the first major theoretical studies

on the subject appeared in the literature over thirty years ago. Miuch

consideration is also being given to the effects on the sound field

when a diffracting barrier is located between the source and receiver.

At first glance, such strong research interest-& reliable indication

that these problems are far from "solved"--may be surprising,

especially In view of the fact that many of the underlying

mathematical concepts were well-developed over a century ago in the

field of optics, and further refined in the early 1900's in the field

of electromagnetics. However, in response to more contemporary

research needs-particularly those of underwater acoustics as weil as

community and aircraft noise control-a re-evaluation of previous

results has become necessary.

1.1 Background and Statement of the Problem

Figure 1.1 (a) and (b) shows the geometry of the overall problem,

where sound propagates from the source S to the receiver R over a

diffracting plane B on, and perpendicular to, an impedance plane G.

Although delineated for clarity, the Impedance plane Is actually

infinite in both of Its dimensions, while the diffracting plane is

4r' Jr,.:.:~-.~
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Infinite In one dimension and finite in the other. The infinite

extents are represented by small arrows in Figure 1.1 (a). Without

lose of generality, the Impedance plane C can be asumed to be

'horizontal" and therefore referred to as the "ground plane," while

the diffracting plane 5 can be assumed "Vertical," of finite "height,"

Infinitely "long,n and referred to as the "barrier." The term

"barrier" is appropriate for the diffracting plane since It will

generally be assumed In this study, as is usually the case In

practice, that the receiver is In Its acoustic "shadow" relative to

the source.

The Impedance of the ground plane may take different values on

the source and receiver sides of the barrier (Z 1 and Z2in Figure 1.1

[b]); however, It will be assumed constant on either side. A

fundamental constraint here Is that the Impedance of the ground plane

does not depend on the angle of the Incident acoustic energy, and so

it may be fully described by specifying only Its value at normal

Incidence&

The flow of acoustic energy from the source to the receiver may

be regarded as proceeding by way of four distinct paths, shown as rays

with exaggerated spacing In Figure 1.1 (a). Thus, there is (i) a

direct path over the barrier without ground interaction (path SBR in

Figure 1.1 [bJ); (1i) a reflected-direct path (SP 1BR) for energy that

1This Is the same as saying that the surface will not support
acoustic particle velocities at angles other than normal, or that the

* surface is "locally reacting." It Is becoming common to use
"Impedance plane" to imply these characteristics.



4

Is first reflected from the ground on the source side of the barrier

and then diffracted over the barrier to the receiver; (iii) a direct-

reflected path (SBP2 R), where the ground reflection Is on the receiver

s, ide of the barrier; and (iv) a reflected-reflected path (SP IBP 2R) for

energy first reflected from the source-side ground, then diffracted by

the barrier, and finally reflected to the receiver from the receiver-

side ground.

The overall problem of a barrier on a ground plane splits quite

naturally into two parts: propagation over an Impedance plane and-

diffraction by a barrier. The former Is illustrated In Figure 1.2 (a)

and (b). This deceptively simple problem has no closed-form solution.

Complexities derive from the fact that the spherical waves from the

* point source are not easily matched to the planar boundary conditions

dictated by the impedance plane.

It Is with regard to this problem that the first major

deficiencies In classical theory became apparent. Older studies

assumed that the incident acoustic energy was In the form of plane

waves, for which the problem is amenable to solution. However, since

plane waves are a fiction of mathematics (implying a source of energy

"infinitely far" away), the resulting solution becomes Inaccurate when

applied to more realistic source-receiver configurations. Moreover,

for angles of incidence that approach grazing, the plane wave theory

Is not useful at all. Hence, modern researchers, working on problems

where grazing Incidence Is the rule, have been forced to take into

account the sphericity of the Incident wavefronts.
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Figure 1.2 The Geometry of the Ground Propagation Probim.
(a) perspective view. (b) side viev.
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q The second part of the problem under study, the diffraction by

the barrier, is illustrated in Figure 1.3 (a) and (b). The case for

which the barrier extends to Infinity In the two directions indicated

by the small arrows (thus, a "half plane" or "semi-infinite" plane)

has received considerable attention in the past. Yet it is clear that

a barrier located on a ground plane as in Figure 1.1 does not fit such

a case, and to use classical results without modification to describe

the diffraction process here would be imprecise. The effects of the

ground plane must be-taken into account, and these effects become more

pronounced as the barrier height decreases.

The research to be described in this thesis has retained, and

expanded upon, many of the constructs of classical half-plane

diffraction theory in formulating a model for the overall problem

depicted in Figure 1.1; however, a scheme has been devised for fusing

these constructs with the results of an original, more exact solution

to the ground propagation problem of Figure 1.2. Predictions, based

on this approach, to acoustic propagation problems involving a

diffracting barrier located on a ground plane should result in a

higher degree of accuracy than available from current models.

1.2 Review of Previous Investigations

The composite problem of acoustic propagation over a ground plane

in the presence of a diffracting barrier has been addressed only

recently. But, as mentioned in the preceding section, the components

parts of the problem-nabsely, reflection at a plane Interface and
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diffraction by a half plane-are classical and have been well-studied

separately.

1.2.1 The Problem of Propagation Over an Impedance Plane

The origins of the formal reflection problem were in the field of

optics. Thomas Young (1773-1829) and Augustin Fresnel (1788-1827)

performed the earliest work on plane waves at perpendicular incidence

to an interface. In the mid-1800's, Simeon Poissoi, George Green,

Lord Rayleigh, and Herman Helmholtz researched the analogous
2

acoustical reflection problem, including oblique incidence.

Sommerfeld (1909, 1926), working in the field of electro-

magnetics, was the first to solve the spherical-wave reflection

problem, stated as a dipole source on a finitely-conducting earth.

Weyl (1919) re-formulated the problem by modelling the radiation from

a point source located above the earth as a superposition of an

infinite number of elementary plane waves, propagating in different

(complex) directions. In the derivation, each component wave is

reflected according to the classical plane wave laws.3

2 A good discussion of such historical foundations may be found

in Lindsay (1972).
3

Although the final forms of the Sommerfeld and Weyl solutions
are very similar, the former contains, while the latter lacks, an
explicit "surface wave" term. Much controversy followed on this
subject (some of which continues today for the acoustical problem),
the nature of which can be gleaned from Norton (1937; pp. 1193-1195,
pp. 1234-1236) or Stratton (1941, pp. 573-587).

e.V
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The Sommerfeld and Weyl integral formulations were not conducive

to numerical calculations or physical insight until Van der Pol (1935)

applied several ingenious substitutions that simplified certain

integrals appearing in the derivations. Norton (1936, 1937) expanded

upon these and other results from Van der Pol and Niessen (1930) and,

with the aid of equations by Wise (1931), generated the most useful

results up to that time. His final expressions for the field, though

approximate, were in terms of the complex complementary error

function, for which numerical values could be calculated. Although

scattered research continued ou the electromagnetic reflection

problem, it i fair to say that the inquiry was essentially completed

with Norton's publications.

The acoustical problem of spherical wave refection was first

attacked by Rudnick (1947), who relied heavily on the electromagnetic

theories of Van der Pol and Norton. He adapted and applied these

results to the problem of determining the sound field from a point

source in the vicinity of a plane interface between two fluid media.

In subsequent papers with Lawhead (Lawhead and Rudnick, 1951a, 1951b),

Rudnick extended his solution to apply to a point source located above

an impedance plane. Approximations analogous to those made by Norton

also enabled Rudnick and Lawhead to reduce the integrals appearing in

the Van der Pol formulation to the error function form, from which

they obtained and plotted numerical results. About the same time,

Insard (1951) applied Weyl's method to the impedance plane problem and

obtained results very similar to Rudnick's, although the methods of

analysis were quite different.

.. . . .I...........................................................
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More recent theoretical studies have expanded upon the

foundations laid by Rudnick, Lawhead, and Ingard. Paul (1957) studied

the two-media problem, applying the method of steepest descent as

modified by Bands and Wesley (1953), to the Sommerfeld-Rudnick theory

and obtained two asymptotic solutions, one valid near the interface

and the other valid in the region above the source. Wenzel (1974)

analyzed the impedance plane problem via Green's functions and contour

integration, and obtained integrals to which he applied asymptotic

techniques for various extremes of the surface impedance. The

surface wave" was attributed much importance by Wenzel and an

explicit term appeared in his solution. Chien and Soroka (1975, 1980)

applied Bands' (1966) double saddle point method of integration-the

*method of subtraction of the pole"-to derive an asymptotic

expression for the total field, which contained the complementary

error function. Their solution is explicit through terms in 1/R ,

where R is the distance from the source image in the plane to the

receiver. Thomasson (1976, 1977) employed the method of steepest

descent, along with several variable transformations, and also

expressed his solution in terms of the error function. His result is

very similar to the first term of Chien and Soroka's full solution.

In a subsequent effort (concurrent with the present study), Thomasson

(1980) generated an asymptotic expansion of his exact integral

representation. He also gave recursion relations for the coefficients

in this expansion to enable higher-order terms to be derived or, more

. .. . . . . - . . . .

-le- .
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readily, calculated on a digital computer.

In addition to the principal studies above, there have been many

other investigations--some theoretical, but most experimental--on the

subject of sound propagation above an impedance plane over the past

decade. The following selected listing may serve as a guide for

further information: Attenborough (1982); Attenborough, Hayek, and

Lawther (1980); Briquet and Filippi (1977); Butov (1981); Chessell

(1977); Delany and Bazley (1970); Donato (1976a, 1976b); Embleton,

Piercy, and Olson (1976); Filippi and Habault (1978); Habault (1980);

Habault and Filippi (1981); Hayek, Lawther, Kendig and Simowitz

(1978); Hayek, Attenborough, and Lawther (1980); Hayek, Lawther, and

Tate (1980); Lawther, Hayek, Tate, and Nobile (1980); Naghieh and

Hayek (1981); Pao and Evans (1971); Rassmussen (1982); and Van 'oorhem

(1975).

1.2.2 The Problem of Diffraction by a Barrier

With its origins in optics and its development in

electromagnetics, the study of wave diffraction around obstacles has

experienced a new surge of interest in the field of acoustics,

primarily among scientist working in community noise control and

underwater acoustics. The body of literature on the subject of

diffraction is immense, even when limited to studies of the half

Although not realized by Thomasson, it has been shown in the
course of thl)present study that Chien and Soroka's full solution (to
terms in 1/R could be extracted identically from the first few terms
in Thomasson's asymptotic solution.
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plane. Thus, only a general survey will be given here.

Thomas Young, in 1800, was the first to critically study the

diffraction problem, but his assertions that the phenomenon was local

to the diffracting edge were rejected by Fresnel in 1815. Instead,

Fresnel employed Huygens' principle and the wave nature of light to

* develop a mathematical theory which became the foundation for more

modern research in diffraction. Helmholtz, in 1859, and,

independently, Kirchoff, in 1882, derived their well-known integral

equation relating the field at an arbitrary point in a region to the

value of the field and its derivatives on the bounding, or

diffracting, surface.

Modern diffraction theory has its roots in the research of

Sommerfeld (1896), whose rigorous approach using an extension of image

theory yielded an exact integral expression for the diffraction of a

plane wave by a rigid (or, alternatively, perfectly soft) half plane.

Carslaw (1898) continued Sommerfeld's research on the half pl-,- and

derived a solution for a point source. MacDonald (190A 91 )

addressed the problem of wedge diffraction--for both a point and a

line source--using the classical "separation of variables" technique

and expressed his solution as an infinite series of appropriate

eigenfunctions. He showed how this series could be re-written in

integral form and noted, for the particular case when the wedge

"collapsed" to a straight edge, that this integral solution was

identical to that given previously by Carslaw. MacDonald went on to

derive an asymptotic form for his exact solution in terms of Fresnel

.. 1
. . .o
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integrals, a form which is utilized often in modern diffraction

studies.

Redfearn (1940), recognizing "the practical importance of the

problem of reduction of noise at a point due to an unavoidable source

of sound at a second point," (p. 273) was the first to seek a

simplified, engineering approach and solution to the edge diffraction

problem for the acoustical case. Drawing analogies from heat

conduction theory,5 he put Sommerfeld's solution into a form for a

point source, discarded the second of two integral terms (which, in

fact, represents the source image in the diffracting plane), assumed

the gradient of the field is zero on the faces of the barrier (an

assumption first proposed by Kirchoff), and finally, generated a

solution in terms of a single geometrical parameter. Redfearn's paper

seems to have attracted little attention at the time of its

publication, but it was re-discovered in the early 1960-s when it

served as the impetus for more modern single-number prediction schemes

for attenuation of community noise by barriers.

In response to the advances in radio communications in the late

1940's and early 1950's, researchers began looking for practical means

of obtaining accurate numerical results for the electromagnetic

diffraction problem. Thus, the Weiner-Hopf technique became popular

(Heins, 1956; Rawlins, 1975; Senior, 1952) and so-called variational

techniques were applied to the problem (Levine & Schwinger, 1948,

Redfearn makes reference to "Carslaw, 'Conduction of Heat',"
but gives no citation.

, .. . .. . . ... .
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1949). The dual-integral method, which yields two integral equations

valid in separate regions of the complex plane, was also employed

(Clemmow, 1966; Jones, 1952). Although applied with success, none of

these methods was especially convenient.

The breakthrough that facilitated practical solutions to many

common diffraction problems was due to Keller (1958, 1962) and his

work on the Geometrical Theory of Diffraction (GTD). Essentially, the

GTD method extends classical geometric acoustics to include not only

reflected sound rays but diffracted rays as well. The mathematical

description of the diffracted rays is in terms of a "diffraction

coefficient" deduced from an approximation to a "canonical"

diffraction solution. For example, in the treatment of a half plane

Keller used the first term in the asymptotic expansion of Sommerfeld's

exact plane wave solution to derive the diffraction coefficient. His

resulting GTD solution, however, is not valid in the transition

regions of the geometric shadow boundaries. Recognizing this

shortcoming, Kouyoumjian and Fathak (1974) incorporated previous

asymptotic results from Pauli (1938) and Oberhettinger (1956) into

Keller's Geometrical Theory of Diffraction to generate a uniform

asymptotic solution, in terms of Fresnel integrals, which remained

valid in the transition regions of the shadow boundaries.

* -Concerning the more complex problem of the half plane with

arbitrary surface impedances, Halyuzhinets (1955, 1962) and

Halyuzhinets & Tuzhlin (1970) employed generalized Fourier transforms

to obtain the first rigorous solution. However, this was left in

° o~~~~~....... ... -l " .... .. - .... .."+m ,. . .. ,. , . . .... ]
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integral form, and special, cumbersome functions were needed for its
.4

evaluation. Recently, Kendig (1977) derived a more useful, closed-

form solution for this problem (as well as for the cases of rigid and

soft half-plane faces-see Kendig & Hayek, 1981) using function

theoretic methods. Kendig's results were expressed in terms of

Fresnel integrals, which are relatively simple to evaluate

numerically. A comprehensive research effort by the Applied Research

Laboratory of The Pennsylvania State University (Hayek, et al., 1978)

consolidated Keller's Geometrical Theory of Diffraction, Kouyoumjian's

and Pathak's uniform asymptotic results, and Kendig's diffraction

solution, to derive very accurate, manageable expressions for the

barrier problem. These expressions serve as the basis for the

diffraction work of the present study (see also Hayek, 1982; Lawther &

Hayek, 1978; Lawther et al., 1980; and Hayek & Nobile, 1981).

Excellent tutorial and review material on the subject of

diffraction, including extensive bibliographies may be found in

Pierce (1974); Skudrzyk (1971); Bouwkamp (1954); and Bowman, Senior, &

Uslenghi (1969).

1.2.3 The Combined Problem of Diffraction by a Barrier on a Ground

Plane

Due to the complicated boundary geometry, there is no exact,

closed-form solution to the problem of point source diffraction by a

thin, planar barrier located on a flat, impedance-covered ground

plane. Neither is there an exact integral form of the solution that

". . . . . . . . . . .. . . . . . . .......... . . . ... . .9m . *. -m
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can be evaluated numerically. Even when both the barrier and the

ground plane are perfectly rigid, an exact solution can only be

formulated (Nobile & Hayek, 1961) In terms of an Integral over an

Infinite summation of Mathieu functions, and to extract any numerical

results from this can be most difficult. Lacking, then, a general

solution to which mathematical approximations could be applied, the

method of attack in most studies has been one of making physical

assumptions about the sound field. The fact that these assumptions

differ from one author to another is principally responsible for the

variety of solutions offered In the current literature. Sometimes

very broad and admittedly crude assumptions produce theoretical

* predictions that compare favorably with experiments. However, an

Increase in accuracy is almost always attainable using fewer, or less

broad, assumptions. The price for this is much more complexity in the

mathematics and often more difficulty In extracting numerical results.

Although there have been many experimental studies on this topic, the

theoretical work is sparse.

Redfearn (1940), mentioned above, spoke in terms of applying his

results to actual barriers erected on the ground, but he proposed no

method for handling the ground reflections. Fehr (1951), on the other

hand, specifically addressed the ground problem, but assumed that the

ground was perfectly rigid and that both source and receiver lay

directly on it; consequently, his approach simply became a matter of

accounting for the pressure doubling by the ground.

* .*~* ...........................................
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Maekawa (1965, 1968) was the first to conduct a comprehensive set

of experiments with the expressed purpose of obtaining a large data

base for comparison with existing theories. He found that his

experimental points clustered rather close to Redfearn's predicted

values, and by fitting a line through the points plotted against the

so-called Fresnel number, Maekava offered a general design curve for

calculating the attenuation expected from a half-plane barrier.

Maekawa went on to propose a simple scheme based on his empirical

curve to account for the effects of (rigid) ground reflections on the

receiver side of the barrier (he assumed the source was still directly

on the ground). Rathe (1969) re-phrased Maekawa's results into a form

that easily yields engineering predictions. Kurze and Anderson (1971)

showed that the prediction schemes of Maekava and Rathe also remain

valid for oblique incidence and additionally proposed an equation that

closely describes the empirical curve.

The first theoretical studies that addressed the problem of a

finite-impedance ground plane and that took into account ground

reflections from the source side of the barrier in addition to those

from the receiver side were done by Lindblad (1970) and Jonasson

(1972). Lindblad set up a numerical integration of elementary sources

(Helmholtz-Huygens integral approach6) over the infinite plane above

the barrier. The major assumptions in his approach are that all

ground reflections behave in accordance with plane wave theory, and

that the fields above the barrier are precisely what they would be in

6 For example, see Skudrzyk (1971, chap. 23).

. o o .. o o • - - • . , . • . o • , ,
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the absence of the diffracting barrier (the so-called "Kirchoff

assumption'). Jonasson assumed that the ground was locally-reacting

and that the barrier was totally absorptive. The latter condition

enabled him to ignore the second term in the MacDonald solution, which

Jonasson employed to describe the diffraction effects. The problem

was treated as a simple superposition of four separate half-plane

diffraction problems (see Figure 1.4), where the "strengths" of the

ground-reflected rays were derived from spherical-wave propagation

theory (Ingard, 1951).

Thomasson (1978) correctly pointed out that neither Lindblad-s

nor Jonassones solution is valid for smail barrier heights. In the

former, the plane-wave reflection theory fails for the near-grazing

rays required to construct the fields above the barrier. In the

latter, the Inherent assumption that each ray "sees" a semi-infinite

barrier becomes unsound. Thowasson offered an integral solution that

Is more accurate for short (and also, for the first time, finite-

length) barriers, it involves the application of his own spherical

wave solution (Thouaseon, 1976) to the ground reflections and an

Integration of the total field over the face of the barrier itself
7

the ground reflections. However, in order to obtain a solution,

Thomasson was forced to invoke the so-called "Rayleigh" or "physical

optics" assumptions, which differ only slightly from the Kirchoff

assumptions.

A7

,7 A form of Babinet's Principle is needed for this; see Bouwkamp
(1954, pp. 51-52).

"S A . A-

% % - '- °. • • - m" ' ' '. " ". " "- " -'-" "'' '- '' '' " " " • '" . . . . . . . . . . . . . "



19

3

SOURCE IMAGE

RECEIVER IMAGE

Figure 1.4 Representation of the Overall Problem as a
Superposition of Four Diffraction Paths Using
Source and Receiver Images.
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A recent contribution by Isei (1980; see also Isei, Embleton, &

Piercy, 1980) is very similar to Jonasson's treatment except that it

allows for an impedance coating on the faces of the barrier.
8

However, the impedance condition is handled heuristically by applying

a plane-wave reflection coefficient to the second term in the

MacDonald diffraction solution (the term ignored by Jonasson). Hayek,

et al. (1978), on the other hand, used Kendig's exact diffraction

solution for the impedance-covered half plane, merged this with

Keller's GTD, but applied simple plane-wave theory to the ground

reflections. The present study has extended the work of Hayek, et al.

by incorporating into their model an original solution to the ground

propagation problem.

1.3 Scope and Importance of Study

This presentation will begin with a theoretical treatment of the

propagation problem--that is, a description of the field at a point

(receiver) in the half space above an infinite, locally-reacting

impedance plane due to a point source of energy located arbitrarily in

that half space. The method of analysis is original, although an

*. important step early in the derivation is similar to, and was inspired

by, a step initially used by Van der Pol (1935) in his electromagnetic

work and later adapted by Lawhead and Rudnick (1951b) to the

acoustical case. This step, which involves the replacement of an

8 Isei apparently forgot to account for one image term in his
solution, and this has been pointed out by Fujiwara (1980).

.'. .'. . .'. .. ',.',. • ,. ' ' , -'. . .. .. • - . - • . . . -- .: ? .I -
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integrand pole by an equivalent integral, leads to a further integral

which is intractable. Lawhead and Rudnick, following the approach of

Norton (1936, 1937), made a major approximation so that the integral

could be solved. The approach used in the present study avoids such

an approximation. The procedure, which will be described in detail in

chapter II, can be broadly outlined as follows.

First, since the major obstacle with the integral is its

complicated exponential, a transformation of variables is made which

changes the exponential into a more useful form. The denominator of

the transformed integrand is then expanded in a Taylor series about

the origin so that a term-by-term integration can be performed. Each

*i  integral in the resulting series is then solved in terms of parabolic

cylinder functions, which are further expressed in terms of the

complementary error function. 'The final formal result is thus an

asymptotic series (since the assumption of "large kR"9 was necessary

for the term-by-term integration) containing the error function plus

various constants. The series is given in a general form, including

recursion relations for calculating the coefficients. Thus, all of

the higher-order terms in the asymptotic series can be written out

explicitly and their values can be calculated readily.

The next phase in the study couples the new propagation solution

with existing half-plane diffraction theory to devise a practical

model for handling the combined barrier-ground plane problem. The

Here, k is the familiar propagation constant and R is the
distance from the source image to the receiver.
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development of this model is presented in Chapter III.

Numerical data for the ground propagation problem are generated

and plotted in Chapter IV, Section 4.1. Here, the sensitivity of the

results to parameters such as "kR," ground impedance, and angle of

incidence is explored. For the combined barrier-ground plane problem,

numerical results are presented in Section 4.2, where, in addition to

the above parameters, the dependence on barrier height and diffraction

angle is investigated.

Although the major scientific contribution of this research

effort is the asymptotic series solution for the ground propagation

problem, the model proposed in Chapter III for the combined problem is

felt to be an important engineering contribution; it is more accurate

than either Jonasson's or Isei's models because a more exact ground

propagation theory is merged with a more exact diffraction theory.

While it is true that the applicability of the proposed model to short

barriers is questionable (as noted by Thomasson In regard to

Jonasson's model), a numerical integration approach such as

Thomasson's (1978)--which indeed might be more accurate for small

barrier heights-is much more time consuming computationally, and

becomes impractical when many source-receiver points must be

10analyzed.

Most highway noise computer prediction schemes-& common
application of such berrier-ground plane models--treat the flow of

vehicles as a line of many incoherent point sources. As several
receivers are likely to be included in any one scenario, efficient
computations are essential.



CHAPTER II

MATHEMATICAL FORMULATION AND SOLUTION

TO THE PROBLEM OF

POINT SOURCE PROPAGATION OVER AN IMPEDANCE PLANE

2.1 Overview

The exact solution to the problem of plane wave reflection by an

impedance plane is rudimentary and well-known.1 1  Until recently,

however, it was customary to simply take the results of the plane wave

derivation and apply them to the point source (spherical wave)

problem. Despite the lack of rigor, the solution so obtained was

consistently confirmed by experiment, except when the sound source was

very close to the reflecting plane. The heuristic derivation of this

"plane-wave solution" to the point source problem can be outlined as

follows.

It is well-known that when a plane wave strikes a flat, perfectly

rigid surface at an angle of inclination 1 , as shown in Figure 2.1

(a), the resulting field1 2 at a point (x,y) can be written as

V(x,y) - e i[kx c s  - kysin*l + ei(kxcose + kysin*] (2.1)

11 See, for example, Horse and Ingard f 168, p. 259).

12 The term "field" formally refers to "velocity potential," but

since harmonic waves are most likely to be considered here, it can

be taken to mean "pressure" as well.
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Figure 2.1 Simple Reflection Problem with Images.
(a) Plane Wave. (b) Spherical Wave
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Here k is the wave number, or propagation constant, and k - 2nf/c,

where f is the frequency and c is the speed of sound in the medium. A

common factor ei(t, where w-27rf and t is time, has been omitted from

this and the following equations. The first term in Equation (2.1) is

the direct contribution to the field from the source acting alone, and

the second term represents the enhancement of the field due to the

reflecting plane. The total field at the point (x,y) would be

identically expressed if the plane were simply replaced by an "image"

source, as indicated in the figure.

It is also well-known that when sound energy emanating from an

ideal point source S strikes a rigid plane at an angle *, as shown in

Figure 2.1 (b), the resulting field at the point P is given by

ikR 1  ikR 2
(P) e R + eiR (2.2)R1  R2

where, again, the first term is the direct field from the source and

the second term can be thought of as the field from an image source.

Now, if the reflecting plane were not rigid but characterized by

a complex acoustic impedance Z, the plane wave solution becomes

(x,y) = ei(k x cos - kysini] + R ei[kx c s + kysin (2.3)

r Here R is the "plane wave reflection coefficient" given by

Rp sini + (2.4)I! p sinO + a
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in which 8 - pc/Z is the normalized acoustic admittance of the

surface. 13 This equation is exact for plane waves; it results from

solving the full boundary value problem. The solution still retains

the form of a direct term plus an image term, but now the "strength"

of the image is no longer unity but Rp

Since Equation (2.1) transforms into Equation (2.3), then

Equation (2.2) should become

ikRl ikR 2

O(p) e R + R e.R_ (2.5)

for the spherical wave case when the rigid plane is replaced by an

impedance plane. This reasoning has been employed by several

researchers to support the use of Equation (2.5) to solve practical

problems involving point sources. There is little mathematical basis

for this equation, and it is not surprising, therefore, that when

acoustic energy from a real source ceases to resemble "plane"

waves--at grazing incidence, for example-the solution fails.

'What is needed is a "spherical wave reflection coefficient" for

the point source problem. That is, the solution should take the form

ikR ikR

1 2
O:p e e 2 6

, P) - R 1 + Q R 2( .6

13 The normalization is by the characteristic impedance Pc of the

medium, where P is the density. The normalized acoustic impedance,
sometimes called the "specific acoustic impedance," is Z - Z/Pc and
hence B - I/ZN .

.1
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where Q is derived analytically from the formal boundary value

problem. Alternatively, a solution may be sought in the form

ikR ikR
1 2 Correctione _ e

O(P) + R - + term (2.7)
R1  p R2

where the correction term approaches zero in the limit when the source

is very far from the boundary but becomes significant when the source

is close to the impedance plane. Both of the above forms of solution

will be derived in this study, but the practical selection of one form

over the other will depend on the intended application.

Perhaps some physical insight about the problem can be gained

before the theoretical treatment begins. Figure 2.2 (a) and (b)

depicts three elemental segments along a single wavefront of either a

plane wave or a spherical wave, respectively. The rays perpendicular

to the two wavefronts follow the progression of the segments A, B, and

C to their "striking points" along the boundary, A', B-, and C'. Of

course, each segment on the wavefront strikes the boundary at

different times, but this is not important here. Rather, the angle of

incidence with which they strike the boundary is the important factor.

For the plane wave, each elemental portion of the wavefront hits the

boundary at the same angle, but for the spherical wave, this is

clearly not the case. With the assumption of local reactance, each

ray "sees" a surface impedance proportional to its normal component of

particle velocity only. This component, therefore, has the same value

for each ray in Figure 2.2 (a) but different values for each ray in
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A

As BI

(a)

B..C

Figure 2.2 Reflection of Elemental segments of a Wavefront.
(a) Plane Wave. (b) Spherical Wave.
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Figure 2.2 (b). Consequently, the phase change upon reflection is

the same at the points A', B', and C' for the plane wave but varies

from A' to B' to CO for the spherical wave. The plane wave is

reflected as a plane wave, but the spherical wave loses its symmetry.

When the ground plane is perfectly rigid (or pressure release), the

angle of incidence is Immaterial since the phase change Is always 180

degrees. Hence, for a rigid plane (or pressure release plane) only,

the spherical symmetry is preserved, and the image method is exi.t.

2.2 Formulation of the Problem

An idealized point source is located at a fixed but arbitrary

position in the half space above a perfectly flat ground plane that

extends to infinity in its two dimensions. The source radiates

acoustic energy into the uniform, quiescent medium that fills the

space above the plane. The resulting field at a point receiver, also

located at an arbitrary position above the plane, is desired. By

definition, the ground plane is "locally reacting;" that is, the value

of the acoustic impedance of the surface facing the source is

independent of the angle of incident energy upon the plane, and it

may, therefore, be fully characterized by its value at normal

incidence. Also, In this ideal case, the proximity of the ground has

no effect on the radiation or "strength" of the source.

Mathematically, the problem stated above can be described by an1. inhomogeneous partial differential ("wave") equation subject to
homogeneous, mixed boundary conditions. Allowing only single
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frequency, steady-state excitations will reduce the governing

differential equation to the Helmholtz equation. The general solution

to such a boundary value problem comprises a particular solution to

the inhomogeneous differential equation plus a separate solution,

containing unknown coefficients, to the homogeneous differential

equation. The total solution must satisfy the boundary conditions.

For this reason, it is advantageous to express the particular and

homogeneous parts of the solution in coordinates that are easily

matched to the geometry of the bounding surface itself.

2.2.1 The Particular Solution: A Point Source in a Free Field

In the absence of the bounding impedance plane, the problem

reduces to a point source of sound radiating into an unbounded medium.

This problem is most easily described in terms of spherical

coordinates, and the solution is derived in many standard textbooks.

It is simply:

O()_eikL.
R(P) - R (2.8)

where R is the distance between the point source and an arbitrary

field point P. Although this uncomplicated form of solution is

appealing, it can not be matched to the planar boundary conditions.

2.2.1.1 The Field from a Point Source in Cartesian Coordinates.

The boundary plane can be specified in Cartesian (x,y,z) coordinates

. ... .. .
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(for example, z-0), and therefore a solution to the Helmholtz equation

in this system would be more useful. The inhomogeneous equation is

V 2(x,yz) + k 2 (x,y,z) - -4w 6(x)6(y)6(z-zo ) , (2.9)

where the symbol V2 is the Laplacian operator in rectangular

coordinates,

72 a2 a2  a2
2 . +2 + (2.10)

ax2  ay2  az2

and the symbol 6 is the Dirac delta function. The source has been

arbitrarily fixed at the point (O,O,zo) and the overall geometry is

shown in Figure 2.3 (a). The solution to Equation (2.9) can most

readily be obtained using Fourier transform methods, where

0- JJ O(x,y,z) •-i( x + nY + CZ)dxdydz (2.11)

is defined as the Fourier transform of O(x,y,z), and

i(cx + ny + z)
$(x,y,z) - J (,h)eddl~ (2.12)

(27)3M

is then defined as the inverse Fourier transform.

Now, applying the transform to Equation (2.9) and employing the

following properties of the Fourier integral and the delta function,

respectively:

• .. ,.... .,.', . ........ ,.....' .+....., ;...... . .. ,•i .
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i x,Y, Z)

SOURCE (0,0, z )

X (a)

* (~*7,C (x, YZ)

C I.
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71

(b)

Figure 2.3 The Cartesian Space Geometry. (a) Source and
Receiver Coordinates. (b) Propagation Vector
for a Single Elemental Plane Wave with Arbitrary
Direction in the Space.
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(t dt -iyl(y) , (2.13)

I 6(t-t°) f(t)dt - f(to) , (2.14)

the field in transform space becomes

4ire

0(9,ra) - 2 2 2 (2.15)
( +T2 + k)

Applying the inverse transformation, Equation (2.12), to this will

yield the acoustic field in the original coordinate system due to the

point source at (0,O,zo). Thus,

O(x,y,z) - 1 e i[Ex+ Y + (Z-Z ) d~drId; . (2.16)
(2! )2 ff(2 + r 2 + ;2 _ k2)

The parameters F, ii, and C may be thought of as components of a

propagation vector, in which case the integrand in Equation (2.16)

takes on the form of a plane wave. More precisely, since E, n, and

may have arbitrary and independent values, the integral describes a

superposition of an infinite number of plane waves of different

amplitudes propagating in different directions. Equation (2.16) can

be written in a form that portrays these ideas more clearly:

eI( -R)
O(R) O(x,y,z) (2 k2 d~drd (2.17)

(r") - k
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where the propagation vector A- + ni + has a magnitude

2 ~2 2 2 -A 2 + T2 + , and the radius vector Rxi x+yi y+ (z-z 0 )i z has a

2 a2 2 2
magnitude R x + y + (z-zo) . A single component plane wave

with propagation vector A is shown in Figure 2.3 (b) to illustrate

these concepts geometrically. Finally, it should be noted that, with

a few simple transformations, Equation (2.16) can be integrated (for

one treatment, see Stratton, 1951, pp. 577-582) to generate the

familiar point source representation of Equation (2.8).

2.2.1.2 The Field from a Point Source in Cylindrical

Coordinates. The boundary plane could be specified by a single

coordinate surface in cylindrical (r,e,z) as well as Cartesian

coordinates (for example, z-O), and therefore a solution to the

Helmholtz equation in cylindrical coordinates could be conveniently

applied to the boundary conditions. The Helmholtz equation for a

source located at a point z-z0 along the cylindrical axis takes the

form

-2 6(r) 6(z-zo)2 2 0" V2$(r,z) + k 2O(r,z) - , (2.18)~r

where the Laplacian operator in cylindrical coordinates is

2 a 2

3 2 1 a 2 (2.19)

ar2  r 3r az2

Because the source has been located directly on the z-axis of the

coordinate system, there is no azimuthal angle dependence in either of

the preceding equations.
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The cylindrical symmetry of the problem suggests the use of

liankel transforms as a method of solution. The Hankel transform and

the inverse lankel transform are defined, respectively, as

9 (X,z) - *r,z)r J (Xr)dr (2.20)

0

and

*(r,z) f J $(X,Z)) J 0(Xr)dX ,(2.21)

0

where J0is the Bessel function of order zero. Hankel transforms are

discussed in detail in many texts and one important property they

exhibit is

2 2*
2 [2+ r~ I(r~z)]r J (Xr)dr -X 0 (X,z) . (2.22)

Hence, taking the Hankel transform of Equation (2.18) results in

the ordinary differential equation

2* 2* 2  *
-X$ 0 ,z) + k 0 (XAz) + d $0 (A, z) *-2 S (z-z) (2.23)

dz 2

or, defining -
2

2
2...f 9(XZ) - 0 $(X,z) -- 2 6(z-z 0) .(2.24)

dz2
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Now, applying the one-dimensional Fourier transform to the axial

distance z, where

f -' J (Xz) 0- d: (2.25)

and

Inf
*(X,za) - ~ *~ ~(2.26)

are defined as the Fourier transform and the inverse Fourier

;.~c.transform, respectively, Equation (2.24) becomes

-iFcz

T-C U)- -2* (2.27)

so that the field in (Henkel- and Fourier-) transformed space becomes

2.0
2 2 *(2.28)

Applying the inverse Fourier transform, Equation (2.26), to this

~ yields

* * C ~ic(z-z)d ,(2

a real integral that can be solved readily using contour integratio

* . and residue techniques. Thus,
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-V (z-zo)_e ;(Z-Z o  > 0
0

* (,z) = (2.30)

a (z-Z o  < 0
V 0

22 >0,cn..wrte 14which, under the constraint Re(V) - Re[((2-k) > 0, can be written

- _v 1 ZZ01

0 (Xvz) - (2.31)

Finally, the inverse Hankel transform, Equation (2.21), is applied to

Equation (2.31) to obtain the desired field at the point (rz) in

cylindrical coordinate space:

O(r,z) R - j4,• .J 0 (Xr) dA (2.32)

0

where i - /r 2 + (zzo)2.

This result is the particular solution to the inhomogeneous

Helmholtz equation. In other words, Equation (2.32) represents a

point source radiating into a free field. From fundamental

principles, it is known that functions of the form

Jine 2h2 *ihz , where h and k are propagation constants and 8

is the azimuthal angle, represent elementary cylindrical waves, which

are solutions to the homogeneous Helmholtz equation. The point source

14 The wavenumber k is assumed to be complex in general; that is,

the medium Is assumed to possess a small, but finite, amount of
dissipation.
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in Equation (2.32) thus represents an infinite, weighted sum of these

elementary cylindrical waves propagating symmetrically about the z-

axis (n-0). Somerfeld (1909) was the first to derive this result,

and the representation of Equation (2.32) is sometimes called the

"Sommerfeld point source."

2.2.2 Total Solution: Effects of the Boundary

Each of the representations of a point source in free

space-equation (2.16) in terms of plane waves and Equation (2.32) in

terms of cylindrical waves-is a solution to the non-homogeneous

% Helmholtz equation. When a boundary such as the impedance ground

plane is present, a second term must be added to the free-space

solution to account for reflections. The total field can be written

as Ptot 0 1 + 0 , where the components may be termed the "incidento r

field" and the "reflected field," respectively. Because the

particular solution- Di W e /l , or either of its elementary wave

expansions-is unique, the reflected term 4r can not also be a

solution to the non-homogeneous equation, but instead satisfies the

homogeneous Helmholtz equation

V2O(r,z) + k 2 (r,z) " 0 (2.33)
r

As such, the solution for the reflected field r will contain

r

arbitrary constants which can be determined by applying the boundary

conditions.

. . .
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2.2.2.1 Total Integral Solution via Elementary Wave Functions.

The free-space solutions developed in the previous sections also

satisfy the the homogeneous Equation (2.33) at all points except at

the source itself (R-O). The elementary plane and cylindrical waves

are therefore eigenfunctions of the problem, and the reflected field

can be constructed from an infinite summation (integral) of these

eigenfunctions, with arbitrary weighting functions to be determined

from the boundary conditions.

The expansion of the reflected field in terms of elementary plane

waves was the approach used by Weyl (1919) for the electromagnetic

problem and later adopted by Ingard (1951) for the acoustic case. By

defining y = [ 2 + T2 k21 with Re Y7>0 , Equation (2.16) can be

transformed into

i(CX + Ty) 0 i(z-z 0)

$D(xyz)- - e ddn + +) f)d • (2.34)

Using residue methods for the c-integration, this can be reduced to

-ylz-z 01
(Xyz) e e + y) ddn• (2.35)

In this form, the elementary plane waves are decaying exponentially

with z, and Weyl termed these "inhomogeneous" plane waves. Noting
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that + 2 + (iy)2 = k2  the propagation constant k can be written

as a vector with components k m Elx + nty + (iy)t z . This suggests

K the transformations iy - kcosa, - (ksinx)cosB, and n - (ksina)sin$.

The resulting field at the point (xy,z), then, from the point source

located at z-z0 can be written as

O(x,y,z) -

ik" w/2-i 27rik[xsnacos+yainasin8+[z-z jcosa] (2.36)
2Ik f fe0 sndB

7r 0

The final step is to assume that the reflected field "originates" from

the image point at z -z and thus

r(X,y,z) -

rr/2-ioa 27r
ik2 ik[xs i+z+zcosal sin+8Zd$ (2.37)

T27r r
iT 0

where the unknown function f (a) must be determined from the boundary

conditions. For the present case of an impedance boundary, fr (a) is

simply the plane wave reflection coefficient given by Equation (2.4).

The expansion of the reflected field in terms of elementary

cylindrical waves was the approach used by Sommerfeld (1909) and Van

der Pol (1935) for the electromagnetic problem, and later adapted by

Rudnick (1947) to the acoustical case. To express the reflected field

in integral form, the results of Section 2.2.1.2 are used,

specifically Equation (2.32). Assuming the reflected field originates

from an image point source at z--zo, the field can thus be written as

. .
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-v(z-z)
0

O(r,z) -Jgr(A) e V AJ (Ar) dO (2.38)

0

where the unknown function r (V) must be determined from the boundary

conditions.

The boundary conditions for a locally reacting surface is that

the ratio of the pressure p to the normal component of the velocity vn

equals the acoustic impedance of the surface. That is,

p(rz) p(ro - Z . (2.39)

v n(rz Vn (ro)

ZinO

Since the pressure is related to the velocity potential by the

fundamental equation p - pat/at, or p - -iwpO for harmonic waves, and

since v n -W/3z, the boundary condition can be expressed in the form

aV(rO) + ikOO(r,O) - 0 . (2.40)
az

Here $-pc/Z is the normalized acoustic admittance of the surface.

When the total solution t = * + r is substituted into
tot i r

Equation (2.40), the unknown functiong (X)can be determined to ber

(A) V + ike (2.41)gr v - ik$

Therefore, the integral form of the total solution is
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ikR 0 (Z+Zo)
.(rz) -R +ikB e XJo(Xr) dA . (2.42)+a f [v -ikO J

0

2.2.2.2 Total Integral Solution via Hankel Transforms. The

result just obtained can be derived in a more straighforward manner

using Hankel transforms. The total solution to the transformed

Helmholtz equation (2.24) comprises the particular solution,

Equation (2.30), plus a homogeneous solution containing two arbitrary

constants to be determined from two boundary conditions. Thus, the

field in transform space takes the form

* -V z-z I* -VZ e z • 0

(X,z) - A(X) e + B(A) e + (2.43)

The first boundary condition that must be met is the Sommerfeld

radiation condition specifying that the field must vanish as z

Because the constraint Re(v)>O has already been imposed, the constant

* B must be set equal to zero. The second boundary condition is that

dictated by the local reaction assumption, namely, Equation (2.40).

Applying the Hankel transform, Equation (2.20) to the boundary

condition yields

a0 (X.0) + ikB,*(X,O) = 0 . (2.44)
az

Substituting O(Xz) from Equation (2.43) into Equation (2.44) and

writing the absolute value quantity as iz-z01 - (zO-z) for z- 0 yields

the desired value of the constant:

-o..

. .."
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00
:, -vz

A(A)m - e 0 (2.45)

* The solution for the field in transform space, then, become

-v(z+z ) -vf s-z I
S+,) -ika e + -t• (2.46)

Finally, taking the inverse Hankel transform, Equation (2.21), of this

expression, yields the integral form of the total solution. Hence,

-d-J -+iJ -v( zoz)

CO~z m e AJZ- (Ar) r + ikE e Avz z J (Ar) dA(.7ikR~z Xfvik e (Ar) d kRoJLv -k8J vo
0 0

which is identical to the previous results of Equation (2.42)

2.3 Derivation of the Asymptotic Series Solution

The integral in the exact solution, Equation (2.47), appears to

be intractable due to the presence of a simple pole at V -

(X2-k2)4 - +ik$ and branch points at X - ±k. Virtually all of the

researchers who have addressed the spherical wave propagation problem

over the past century have been faced with this, or a very similar,

integral, and all have necessarily resorted to approximation methods
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for its evaluation. Those methods based on an asymptotic approach, in

which a critical parameter such as "R" is assumed to be large, have

proven to be the most accurate and to provide the most useful results.

In these, the real axis path of integration is continued into a

contour in the complex plane that invariably must be deformed around

the branch point and branch cut. It is to the resuting branch line

integral that the asymptotic technique-usually the "method of

steepest descents"-is applied. In addition, proper attention is paid

to the simple pole, which may or may not be enclosed by the final

contour depending on the specific nature of the problem.

The approach in this study is different. The pole is replaced at

the outset by an integral representation, and the branch line

integration is avoided through an appropriate transformation of

variables. However, the "asymptotic" assumption is still necessary,

but it is invoked later in the development when the integral is

expanded into a Taylor series. The final form of solution will be an

asymptotic series, for which the coefficients may be calculated by

recursion formulae.

2.3.1 Replacement of the Pole

By re-writing (V+Y)/(V-Y) - 1 + 2Y/(V-Y), the final solution

given in Equation (2.47) for the field at the point (r,z) can be

expressed as

9-
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ikR ikR o -V(z+zo)
12 o

*(r,z) e + e _+ 2y e XJo(Ar) dA (2.48)
1 2 (V-y) V o

0

in which y-ikB, R1 is the distance from the source at (O,zo) to the

point (rz), and R2 is the distance from the image point at (0,-z 0 ) to

the point (rz). The geometry of the problem is illustrated in Figure

2.4.

From the fact that 1/p = f e-Ptdt for Re(p)>O, the pole in

the Integrand of Equation (2.48) can be transformed as
1i

e - ( v - Y)n dn ; Re (v - y] > 0 (2.49)I1

0

However, it turns out that the constraint Re(V-Y)>O is not very

16
convenient, and a better transformation would be

1 ei(v - Y)n dn ; Re [i(v - y)]>0 (2.50)
T~v -y) i

0

so that

(v 1 e-i(v - Y)n dn ; Re [i(v - Y)] 0 (2.51)( Y ) " i - )

0

15 This step is based on a similar one first used by Van der Pol

(1935) and later adopted by Lawhead and Rudnick (1951).

16 The constraint translates into Re(v) + klm(S) > 0. Although

Re(v)>0, the imaginary part of B may be positive or negative, and the
condition Re(v-y)>O can not be guaranteed.

,' '.:."... . V.: '- . 4" - .. " .,-?. -.. . * '''' . ." ." . • - " " . - . .
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Figure 2.4 Geometry of the Propagation Problem in
Cylindrical Coordinates. Source-Receiver
Distance R9Image-Receiver DistanceR.
Reflection angle , and Ground Admittance 8
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Writing v v r + i±t and Y ik(Br + i) = -k i + ik8r, where the

subscripts "r" and "i" indicate "real" or "imaginary" parts,-

respectively, then the constraint Re[i(V-Y)l > 0 translates into

"" (-Vi + kOr) > 0. Because the real part of the impedance Z=R+iX for
/2r2

physical materials must be positive, then 8 R - /(R +X ) must also be

positive. Thus, in order to satisfy the constraint in Equation

(2.51), it is sufficient that V be negative. That this is indeed the

case requires a closer look at the parameter v.

Assuming that the medium is not ideally lossless, the wavenumber

k may be written as a complex quantity k - kr + iki, and because

eikR/R must decay for large R, the imaginary part ki must be positive.

Furthermore, if the symbol "/-" is adapted here to indicate the

positive real square root (often called the "principal root"), then

v .X _ k2 ( 2-k 2+k 2) i(Zk k V.The real part of the
r I ri

quantity under the radical can be positive or negative, but the

imaginary part will always be negative. Hence, the root must lie in

the fourth quadrant; that is, vi<0.17

The replacement of the pole via Equation (2.51) is thus valid for

general impedances (springlike or masslike), and when the result is

substituted into Equation (2.48), the integral term becomes

17 This can also be shown by considering the assumed time

dependence. Thus,

*VI-z 0 1e-iwt . V rvz-zo1(-Viz~zOIwt)

therefore, to ensure outward propagation, v<0.
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IIe""~h ' nI iynl(.2
1i 2iy - - x 0 (r) dA e dn (2.52)

00

where h-(z+zO). The term in brackets resembles the Sommerfeld

representation for a "point source," Equation (2.32), and therefore

1  21y cc re ikR '  eiynI L R' e dii (2.53)

0

where

R'- / + h2 +2ih- 2  (2.54)

From Figure 2.4 It can be seen that h/R2 = sin* and r
2+h2 =R , thus

R' = R2  1 + 21n sIn . (2.55)
2 R R2

R2

where Re(RO) > 0.

The integral in Equation (2.53) now takes the form

2i "_ d, (2.56)

. or

.4

" " . . .. '..- -. .- -.

.. df 21 . - .
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*ikR 2 [(l -g2+ 21g sin*P) + iBF

Ila-W l - 2 + 1 io dE (2.57)

0

where the transformation FT1/R2 has been applied. Although the pole

has been "removed" from I,, the integral is still cumbersome, and a

transformation of variables will nov be made in order to simplify the

exponential term.

2.3.2 Variable Transformation

The functional form of a single variable transformation -&(t) on

a contour integral is

Jf(Q) d9 [.J)d&t dt (2.58)

or, more specific to the case at hand,

eaf(D) F(Q) d& ea*() F(&(t)] d&(t) dt (2.59)J f dt
& ~ C

where C &and C t are arbitrary contours in complex c-space or complex

t-space, respectively.

* The exponential in the field solution, Equation (2.57), can be

put into a simpler form by the variable transformation
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-p

/ 2 + 21& sin* + iog -(t 2 + 2Bt + C) (2.60)

With this transformation, the original real axis path O<&<m will in

general become a contour in the complex t-plane.

To determine the values of the coefficients B and C, two

constraints must be placed on the transformation. The first is that

the transformed contour should start at the origin; that is, t(&-O)-O.

This condition immediately fixes the value C-1 (again, the root on

the left hand side of Equation [2.60] is taken so that the real part

is positive). The second constraint on the transformation is less

trivial. Of course, if the transformation were matched at any other

point t(&O)=to, the unknown coefficient B could be determined.

However, the most judicious choice for this matching point is the so-

called "saddle point" of the original integrand.

2.3.2.1 Matching Transformation at the Saddle Point. The point

at which the derivative f'(&)-O is called the "saddle point" and is a

fundamentally important quantity in the asymptotic technique of

"saddle point integration," also called the "method of steepest

u . descent." At the saddle point, the integrand takes its maximum value

and falls off rapidly to either side in the directions of "steepest

descent." The power of this method lies in the fact that if the

integration is performed along the path of steepest descent, most of

the contribution to the integral comes from the immediate vicinity of

the saddle point.

The saddle point &0 of the integrand in Equation (2.57) satisfies

.
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.4:d 2
d 2 + 2i sni) + is&]i= , (2.61)

and the saddle point to for Equation (2.57) satisfies

d i[-t2 _ 2BC + i - 0 (2.62)
dti~

where the parameter a in Equation (2.59) has been set equal to kR2.

Therefore, solving the previous two equations, the saddle points are

found to be

is cosgs
&o =  sin* +

2(2.63)

to -B

When these values are substituted back into the transformation,

Equation (2.60), the coefficient B can be determined. Thus,

B2 _1 sin* + / 2cos (2.64)

or,

B -i(l + sin*- 2 cosW) . (2.65)

-~~~.'... .. ..... .:-' -i-...... ' .. " i . . • ". .
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Note that at this point in the derivation there is nothing to govern

the selection of the root in Equation (2.65).

2.3.2.2 The Transformation of the Integral. The transformation

of the exponential factor is complete; that is,

ikR2(l- 2 + 21 sinO) + i$ ] -ikR 2[t2 + 2Bt - 1]
e 2 e (2.66)

With reference to Equation (2.59), the next step in the transformation

involves the function F(&), which is defined here as

F( ) = (2.67)

i2 + 21& sin

In order to find F[&(t)] where

F[ (t)] - 1 (2.68)

/1 - &2 (t) + 21&(t) sin'

the quantity & must be expressed as a function of t. In a

straightforward manner, Equation (2.60) can be solved for (t) as

,(t) = {_(-t 2 2Bt + 1) + sino
2(1 - 82)

(2.69)

±[(-t2  2Bt + 1 + sin*)2  ----- cos]

The quantity in the square bracket can be factored so that

"U
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(1 -- ) {)(-t2 + 2Bt + 1) + sin(( a (2.70)

sint 2  2t

where

H = + 8 sinO + a cosO (2.71)

and where the sign of the root in Equation (2.69) had been selected to

make &(tu0)=0, as required. As a check on the transformation in

Equation (2.70), it is easy to confirm that &(t0 )-n0 . Now when (t)

from Equation (2.70) is substituted into Equation (2.68), the

integrand function F[(t)] can be determined. Hence,

2
F((t)] - 8 ) + si (2.72)

[a(t) + a sin] - 8(t + B)[8 +B y(

in which the following shorthand notations have been introduced:

2
a(t) =-t 2 - 2Bt + 1

(2.73)

2
t 2Bt

y(t) -H + .

The final step in the transformation of the integral is to derive

an expression for d&(t)/dt. This is effected by differentiating the

expression for &(t) in Equation (2.70), and therefore
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d&(t) - (l-S2) { [ Bs~ t wr'Tt 7+ [a(t) + } (2.74

Ffdt) 22 (2.75)
S + siJ)I iH

WTh he tranformtion(/ thcoee, theuorginthralierly ofpl

ikRt 21

12~ (8+nr4) A e 2 t (276

H a

wiution definedcin eation .1 n nEuto 26) h

plae.Therot in1kthe xrsinfrBwl2 b ie yteoc

of thi integratio path.

2...iTePth of defnteinEqation .1 n in tEqutione(5. sThe vleo

& goes from 0 to +- along the real axis, the transformed variable t
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will trace out a path in the complex t-plane. The transformation,

Equation (2.60), can be readily solved for t(&), which will describe

this path; thus,

- -B ± (B2 - V(&)] (2.77)

where

V(&) = -1 + 1 - &2 + 2isings + iBs . (2.78)

The constraint t(&-O) - 0, or

t(O) - -B ± [B2] (2.79)

dictates the selection of the root in Equation (2.77).

The parameter B= ±i(l + asin* - A-'costp) can be neglected in

comparison with V(&) for -R, where R is some large, positive

constant. Thus, from Equation (2.77),

t( - R)j - ±11 - R2 + 2i.sini - iOR]

. ±(_ _- i(Rr + is ) R] (2.80)

- ±[BiR - i(R + 8rR)]

The imaginary part of the quantity inside the brackets is always

negative, but the real part can be negative or positive. Thus, if
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7i<O, the quantity in brackets is confined to the third quadrant, and

the two roots will lie in the seventh and third octants. If 8>0, the

bracketed term is in the fourth quadrant, and therefore the two roots

will lie in the eighth and fourth octants. These relationships are

illustrated in Figure 2.5 (a).

The octants that have been identified represent potential closure

regions for the integration contour in the complex t-plane. That is,

the original path along the real axis will connect via a circular arc

of large radius to the point t(R) expressed in Equation (2.80).

Refering to Figure 2.5 (a), it is apparent that the most convenient

choice for closure is the eigth octant for $t>0 and the seventh octant

for Bt<O. In either case, the final closed contour will enclose a

region entirely within the fourth quadrant, as shown in Figure 2.5

(b). Assuming (for the moment) that no poles or branch points lie

within the enclosed region, the following relations hold from

fundamental principles:

J +J-f O(2.81)

Cl CR C1 c R  ct

where C1 is a path along the real axis; CR is a circular arc of

arbitrarily large radius R; and Ct is the actual transformed contour

(from the original real c-axis). So long as the integral over CR

vanishes, the original real-axis integration in terms of , Equation

(2.57), can again be expressed as a real-axis integration in terms of

t. That is,
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d& =Cdt dJdt m. (2.82)

Eno C C tuo

As this is the desired result, the final step in the transformation is

to ensure that the integral over CR vanishes as R gets large.

The exponent in Equation (2.76) can be written in terms of its

real and imaginary parts for t-tr+iti and B=Br+iB 18

-ikR 2 (t 2+2Bt) -ikR 2 (tr +it1 ) 2+2(Br+iB)(t r+i)] , (2.83)

where the real part

Re[-ikR2(t + 2Bt)] W 2kR2 t ti + 2kR2B ti + 2kR2Bit (2.84)

must be less than zero. First, for path CR "starting" on the real

axis, t1-O, so that Re[-ikR2(t +2Bt - ZR2Bitr Hence, to ensure

convergence here, Bi must be negative. Furthermore, for all other

points along CR off the real axis, the first term on the right hand

side of Equation (2.84) is sufficiently large to ensure that the

exponent is negative regardless of the sign of Br . Consequently, the
r

proper root for B is now fixed, and Equation (2.65) may be re-written

to enforce the constraint Bi<O as

The wavenumber k, which had been assumed complex for physical

*purposes, can here be assumed real for mathematical purposes. In the
alternative, the small positive imaginary part k could be made
arbitrarily small so that k =kr + ik-- kr in 1he limit.

. .. . .
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- + Osin,- /1-$"cs ; Relr 0 (2.85)

and the transformed path, Equation (2.77) can be specified as

t() -B - V() ; Im > 0 (2.86)

where the symbol / indicates that the root is to be taken to yield a

positive imaginary part.

2.3.3 The Branch Points and Branch Cuts

The simple pole that was present in the original integral (see

Equation [2.48]) does not appear in the transformed integral of

Equation (2.76); however, due to the multivalued nature of the

denominator, a branch point is still present. It can be shown that

the presence of a branch cut arising from this point will not affect

the integration directly since the contour can be closed without

crossing any portion of the cut. But, as will be pointed out later,

the branch point is also a singularity of the integrand and, as such,

will limit the radius of convergence of the Taylor series expansion of

the denominator.

The branch points are simply the roots of the equation

t2 2t
- 2 2t+ - 0 (2.87)
H H

where, again,

Ij'V. . . . •. . . . - --, . • J "" , . .
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H 1 + sinO + a (2.88)

Therefore, the branch points are

t B - t YA ; Re r> 0 (2.89)

*! 2

where A - cos*

The branch cuts associated with these points have already been chosen,

implicitly. That is, the specification that the root in the integral

of Equation (2.76) be taken to yield a positive real part has

essentially defined lines in the t-plane, across which the value of

the root changes in sign. The equation describing these branch lines

can be derived in a relatively straightforward manner.

In the complex z-plane, the negative real axis acts as the branch

cut for the constraint Re(z) >0; that is, the equation describing the

branch line is zline - -p, for pZO. In direct analogy, the constraint

Re( 2t + 1]1f > 0 (2.90)

translates into the defining equation for the branch line

t2 2B2

- 2 2 I -- p ; p O . (2.91)
HH

line

I
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Solving this for t, gives the equation for the branch line in the t-

plane. Thus,

nt m-B ±V2A+pH ; pO (2.92)

It can be shown that the branch lines described by this equation

usually lie wholly within the first, second, or third quadrants of the

t-plane, and consequently do not interfere with the closed integration

contour. For the rather unrealistic case for which Bi>0, 11 >>l, and

sin*0-O, one of the branch points can fall in the fourth quadrant;

however, the corresponding cut extends downward, and the closed

contour can be perturbed- if necessary-to avoid crossing it.

The transformed path, Equation (2.86), along with the branch

cuts, Equation (2.92), are plotted in Figure 2.6 (a) and (b) for two

representative combinations of admittance 8 and grazing angle *. The

contours are presented here only to add insight into the problem, as

the final integration need only be performed over the positive real

axis.

2.3.4 The Taylor Series Expansion

The integral in Equation (2.76) can be re-written now as a real

integral. Thus, disregarding the constant multiplier,

..,''.. - -' -',-,.-o° . . . i . . . . i . . " - '-i . .
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2
-ikR 2 [t + 2Bt]

13 "'e dt (2.93)

o t 2Bt
H H

The square root function in the integrand is still the obstacle

preventing the evaluation of this integral, so the radical will be

removed by expanding it into a Taylor series about the origin. It is

possible to avoid computing the derivatives normally required by

Taylor's formula by noting that the given function is already in the

- 2standard form (1+u) where u--(t /H + 2Bt/H). From the well-known

result

- 1 32 5 3 3 5 4

(1l+ - 1 - u+ - u ++ Uu ... (2.94)

the expansion for the integral factor can be translated to be

1[HBt H] [t1~ [~ 2
1 t2  2Bt"

5B3 B 2~5~ 3 4

+ 5 3 B 2 3 2 3 + L5B +...
[2 3 ; H 8

CO

at2ZTn tn  (2.95)

n-,0

A general form for the Taylor coefficients T can also be obtained as
n

follows:

.. . .....-....... ... ....... .,.... .. _ __ :
.. , ..... 0 . .. . .. ... . . . , . . . - . . .: . . . .-
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[n-2k]O -

T ) I n  a.4 (2.96):n n n- i in-n (2B) n k a -

where the quantity (n is the binomial coefficient; the parameter G

is given by

G = -B2  1 + Osin A acosI ; (2.97)

and a-nk is expressed by the following recursion relation:

a -1
0

a (1/2-m) a (2.98)m a U-I

The notation on the sumation symbol in Equation (2.96) indicates that

k increases in integer steps until the expression (n-2k)2O is no

longer satisfied (for example, if n-6 or n-7, then k=0,1,2,3). For

reference, the values of the binomial coefficient and a required for

an expansion through t6 are given as follows:

*1

-i2

.
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a2 -3/8 (4) - 6

2 2

a - -5/16 = - (2.99)

3 (1)

a. 35/128 (53 - 10

a3 - -63/256 (6 - 15
5 20

a 6 - 231/1034 3~ - 20

(6) - 15

As with any Taylor series, the expansion in Equation (2.95) is

absolutely and uniformly convergent within any circular region in the

complex plane about the expansion point (t-0 in this case) that does

not contain a singularity. The circle of convergence for Equacion

(2.95) is thus limited by one of the branch points t1 or t2 defined in

Equation (2.89). Precisely, if Ital represents the smaller of the

magnitudes 1t1l and It21, then the radius of convergence for the

Taylor series will be Ital. Of course, for values of t such thar

It>Ita 1, the function on the left hand side of Equation (2.95) can no

longer be equated to the series on the right, because the latter may

diverge.

.- .. - .. * 4 : ... ~-. .. .
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2.3.5 The Term-by-Term Integration

The integral 13 in Equation (2.93) can now be re-written as a sum

of two convergent integrals

I - I; + 1"
33 3

Ital -ikR2(t2+2Bt) e-ikR 2 ( t +2Bt)

- e Tn dt+ dt

o noal 1  t - 2Bt
H a

(2.100)

It should be emphasized, here, that no mathematical approximations

have been made thus far in the derivation and so the exact expression

for the field, Equation (2.47), can be written

ikR 1  ikR2  ikR2
-r e 1  e 2  

- 4ikRSBe 1 (2.101)
a2  ( + sin*) 3

with 13 given above.

To insure accuracy in the approximations to be made, the relative

magnitudes of the two integral terms in Equation (2.100) should be

investigated. If the second integral can be neglected, then a term-

by-term integration on the first integral would accurately represent

the field. It is sufficient to examine first the behavior of the

integrand

f,
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-ikR (t 2 + 2Bt)2
U(t) = e (2.102)

2
.t 2Bt

" H H

Plotted in Figure 2.7 (a), (b), and (c) are the real and imaginary

parts of the function U(t) versus t for three values of the parameter

kR . Here, and P are fixed at the representative values

8-(0.055,-0.062) and 'P-3.8 0 . The value of Ita for this B and 4 is

marked by a vertical bar on the t-axis and indicates the limit for t

beyond which the Taylor series diverges. It is apparent from

Figure 2.7 that as kR2 increases a greater and greater contribution to

the integral comes from the region in which the Taylor series

converges. In other words, for large kR2, the integral from t-0 to

t-- in Equation (2.93) can be replaced by just the first integral in

Equation (2.100). The condition "large kR2" can often be taken in a

relaxed sense. In the particular case shown if Figure 2.7 (b), for

instance, the relatively modest value of kR -13.5 shows a very minor
2

contribution for taIta l.

There is one final step to be taken before the integral in

Equation (2.93) can be expressed in a form suitable for term-by-term

integration. This involves replacing the denominator in the second

integral of Equation (2.100) by the Taylor series expansion, and thus

writing
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Re [UuJ)
Im[ U~t)]

U(t)

10IkR 2 =2.5

0.5

=3.80

ZN (6.0, 8.0)

=(.055, -.062)

Figure 2.7 Real and Imaginary Parts of Integrand Function U~t)
Ivs. t for ZN, P and 8,Fixed. (a) kR 2.5
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- Re [uoJ)

IUM t))

1.0

=R 13.5

%2

t

-0.5

1.0.8

ZN = (8.0, 9.0)
= .055, -. 062)

Figure 2.7 Real and Imaginary Parts of Integrand Function U(t)
vs. t for Z,, and B Fixed. (b) kR2 13.5.
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- Re[U(t)]

U(t)

1.0 2 33

0.5

0 I FI I t
12 3 4

t
-0. a

0
-1. 4(1 3.8

ZN (8.0, 9.0)
=(.055, -.062)

Figure 2.7 Real and Imaginary Parts of Integrand Function U(t)
vs. t for Z,,,P and 3 Fixed. (c) kR 3.7
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r 14 f e Tnt dt

(2.103)

CD 2,,kR t + 2Bt)
+ e+Tnt ] dt

Ital

or

£ i e-ik 2t  i23t)
CO T tn2 dt (2.104)

n=0 0

Clearly, from the discussion in the previous section, the second

integral in Equation (2.103) does not equal the second integral in

Equation (2.100) and so I4'0 13. However, a relationship does exist

between the two integrals, namely that 14 given by Equation (2.104) is

an asymptotic expansion (sometimes called a "semi-convergent"

expansion) of the integral 13 An asymptotic expansion converges up

to a point, and then diverges. That 14 represents an asymptotic

expansion of 13 is proven in principle in several classical

mathematics texts 19 and may be explained heuristically here as

follows.

The second series of integrals on the right hand side of Equation

(2.103) clearly diverges since it involves the Taylor series outside

of its circle of convergence, but the first series converges. The

19 The necessary tools are Watson's lemma and some theorems on

Laplace transforms. See, for example, Copson, 1935, p. 218.
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rates of convergence and divergence are controlled by the parameter

kR2 in the exponent: the larger kR2, the more rapid the convergence

of the first series, and the slower the divergence of the second.

However, for any fixed value of kR2, the sum of the two integral

series behaves asymptotically since it will always converge up to a

certain number of terms, at which point the second series "takes over"

and causes it to diverge. Moreover, recalling the conclusions drawn

from Figure 2.7 (a), (b), and (c), the series up to the onset of

divergence is an accurate representation of the exact integral for

"large kR2

The conclusion to be drawn from this section is that

ik2(t 2Bt) 2
dT2t r -ikR2 (t + 2Bt)

I3 f d e dt . (2.105)

o t' 2Bt n-o 0
H H

where the symbol "-" translates "has the asymptotic expansion" or "is

asymptotically equal to." Each integral in the series is tractable,

and, as a result, it will be possible to express the total field

solution as an asymptotic series of closed-form terms.

2.3.5.1 The Formal Series Solution. The general integral in the

series Equation (2.105) can be solved in terms of parabolic cylinder

functions. The functional form is (Gradshteyn & Ryzhik, 1965,

Integral #3.462[1]):

*%*.
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2_ 2
t t n e-at2-bt dt 1 b/ r(n+l) eb /8a~~~~~~~~(2a) n)/Dnl)(l2-)

0 (2.106)

where r(m) is the gamma function--for integer arguments r(m+1)-m!

-and Dp(Z) is the parabolic cylinder function. Several fundamental

relationships involving the functions D p(z) will be useful for later

development (see Gradshteyn & Ryzhik, 1965, pp. 1064-1068). First,

zl 2A
D (Z) - 2 e erfc(z/ r) (2.107)

and20

-/ eZ2 /4 Z2/

D2 z erfc (z/ ) - e, (2.108)

where erfc(z) is the complex complementary error function defined as

2 e_T 2

erfc(z) - 2_ dT . (2.109)

z

In addition, parabolic cylinder functions obey the following recursion

relationships:

20 There is a sign error in the expression for D (z) found in

the text by Gradshteyn and Ryzhik. The expression gi;Rn here is the
corrected form.

,, ;,"; ".. . .' . .. ' . - . .,-. -, . . : . . . . . . . . - . . .. . . .. ..... .. :. -
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Sp (z) -zD(Z) + pDp (z) -0

d D (z) +1 zD (z) 0 (2.110)
dz p 2 p p-i

d"z- D W -IZDp(Z) + pDp (z) 0

d p 2 p p+ 1 (

for which the following equality (Abramowitz & Stegun, 1964,

Section 7.2.8) might prove helpful:

2
d erfc(z) - - e- z  

(2.111)
dz

Using the recursion relations, it is relatively easy to derive the

following explicit terms

D_ (z) ez /2 erfc(z/v'2) [- +-I + e5 z4 (2.112)

+ 4 [4 2

S(2 114)

e or in general,

4 2i

2
ezA 

-z/

.. ,.-."-~/r2 -- ".. •22
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D(nl)(z) = / ez2 / 4 erfc(z/J') Q(n 1 ) (z) + e-  P (Z)

(nl -Z (~)(n+l)

* (2.115)

where

Q,1 (z) -1 P (z) = 0

-Z P (Z) - 1 (2.116)

Q (Z)Z + - (Z)

Q(n+l) ()" n Q-n~z  nQ--lz 1

-(n+l ) - (z) + - (n -
1) (z)

Now, translating "z" in the above to "b/ 2a" and substituting Equation

(2.115) back into Equation (2.106) yields a recursion relation for the

integral itself. That is,

ctn  -at2-bt dt - i eb2/4a erfc(b/2 ra) E + R (2.117)

f2 a ni n
0

where

E(r+l) Q (b/2) (2.118)= (2a)/

and

im= (2a) (m+l)/2  m+1)-(re+l)(rl) (b/2 .) (2.119)

,- . . . *. .* : . " : / / ..



76

Noting that r(m+i)-(m+l)r(m), the coefficients E and K can be
m m

expressed more concisely as

E ~ 7 (2.120)
S 2a m_-I Za M-2

and

._b -+  - ,.,1
m 2a u-i 2a Km-2(21)

where

00

(2.122)

E1 2a K1 2 a

The general integral at the beginning of this section has thus

been solved in terms of the complementary error function and two

general coefficients, for which recursion relations are provided. The

specific integral of Interest here--Equation (2.105)--can now be

expressed from the above results by translating "a" to "ikR2  and "b"

to "21kR2B." Thus, the asymptotic expansion of the integral 13 in

Equations (2.93) and (2.105) can be written in the final form

13 Z T [e E + K] (2.123)
3 n o nO

nino

where

A.. . . .. . . •. ' , ,..... ... . . - - a. :-. . . .• . ,-
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E--BE (Mn-1)

m m- "2ikR 2 E-2

(2.124)

i! -1 2ikR K- 2

and E °  1 K -0

E -B K, -l/21kR2

In addition, the parameter e0 has been introduced as

~ -~ 2

a - e erfc(-iX) (2.125)
2 ikR 2

where

A2 = IkR2[1 + $sin* - (1 - 02) cos ] (2.126)

and

krv '/1 + $sin* _ (1 - 2) cos$ . (2.127)
2

All complex square roots in the above equations--including

(l-02)h--are to be taken to yield a positive real part. It must be

stressed that the definition for X in Equation (2.127) has been

derived from the argument of the parabolic cylinder function, and the

roots must be taken separately as Indicated. This is Important

because, in general, $if(zT 0 AT A-M, when p is a positive

constant and positive real roots are taken.
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The full solution for the field at the point (r,z) can now be

written as

ikR ikR ikR
1 2 2

(r,z) R I 4 eR1 R2  '(0 + sin) Tn[eEn + K n (2.128)

nwo

2.3.5.2 The Q-term Form of Solution. As mentioned in section

2.1, it is often desirable to express the total field as a simple sum

of a direct component from the source plus a reflected component that

appears to originate from an "image" source at (r,-z 0). Hence, a

solution of the form

ikRI  ikR2

O(r,z) - i + Q e_.R. (2.129)
R 

2

will be sought in this section.

The last term in Equation (2.128) can be re-written as

ikR 2

T e [-2ikBR e°TnE -2ikBR2TK] (2.130)
3 (+ sin) R2  nn 2 nfn

I!2 E
n-0

Furthermore, it is convenient to re-express the product TnEn as

. ... .
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E2k)O nkk (4G) -E'E
TE a T E (2131)

L n nk(2 n

where

n-2k2:0 (4a-k

T - Z k a n-k (2.132)

k-o

and the factor E - E /(2B) n . New recursion relationships can be
n n

derived for the starred coefficients, so that

* * E1  1
Eo 1 E1 "n " 2

(2.133)

E* E (m-) E

m  2 m-i- 8ikR2G m-2

2

where the fact that B2-G has been used.

Similarly the term (-21kBR2)TnKn can be re-expressed as the

simple product T K wherenn

* * 1=K 0 K1 " 2-
0 2

(2.134)

i 2-*K (R-) *
K" 27 n-1i 8ik2G Kn-2

4...: .- .' . . . ..., ..-4. .. - .. - . . . . ]
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When Equation (2.130) is substituted back into Equation (2.128),

the total field may be expressed in the form of Equation (2.129), with

Sthe "spherical wave reflection coefficient" Q given by

Q Z + (B T *e K (2.135)
'( + sin ) n i n n

n=o

Here, the parameter e1 has been introduced where

2
e -2kBRe kR Ve X erfc(-iX)

2 ikR 2
(2.136)_2

X i e- erfc(-iX)

and A is defined by Equation (2.127).

2.3.5.3 The F-term Form of Solution. The asymptotic series

solution developed in section 2.3.5.1 can also be put into a form that

provides a more direct comparison to the classical plane wave

solution. As such, the solution would comprise a direct component

from the source, a "plane-wave reflected" component, plus a correction

term that accounts for the sphericity of the wavefronts (see Equation

[2.71). Historically, several approximate solutions in both

IL iI  electromagnetics and acoustizs have been expressed in such a form, and

these contain the so-called "F-term" or "attenuation factor." The

solutions are expressed as

U

I
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ikR ikR ikR
e 1  e R2 e R ) F

+ R + (1 p R (2.137)

where R is the plane wave reflection coefficient,P

R= sin - 8 (2.138)
p sinIP +-

This form of solution is easily derived from the Q-term form-

given in the previous section. Thus,

28 = sinP + 8 - sinW + 3 = - ('.

(8 + sin) (8 + sini) p

and, therefore

Q R + (1 - Rp) F
p p

=1+ (1-R) T* [,E* K*
p n lIn

n-o

Solving this for F gives the tina: 7r. -

where T is ,.t
n

EquatIun .

Lquat .r

Iil lIilllii'
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2.3.5.4 The Hankel Function Form of Solution. The results of at

least one recent study (Chien & Soroka, 1975), which applied

asymptotic techniques to the point source propagation problem, were

expressed directly in terms of the zero-order Hankel function. The

same function has also appeared in component terms (most often, the

"surface wave" term) in other solutions offered in the literature. In

view of this, the asymptotic series solution will be expressed in an

alternate form that is also in terms of the Hankel function. It is

offered here mainly to facilitate comparisons with other solutions, as

the series forms presented so far In this study are the preferred

forms of solution. (The series solutions, in conjunction with the

recursion formulae, translate readily into computer programs for

providing numerical data.)

The first fewproduct terms T nE from the Q-term solution,

Equation (2.135), can be written out explicitly to generate the

following series:

.,..~~ E. e:- + 1+-I) + 3i) + -
.4 Partial

++ 1 15 (G1 ) 2rG)f 351 1  -]

2 Lb (2.142)

+ . + L- +G 1 f3
32(ikR2H)2  1

+4'-
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where the parameters H and G are repeated here as

H - 1 + Bsin* + (1 - 2)i cosB(1

G - 1 + Bsin* - (1 - 0 ) cos2.

Each of the series in the brackets subscripted a, b, and c can be

recognized to be simple expansions of the form (l+x)G such that

~G -a/2
L a

G 3(2.144)

[lb 7- (1 )

Using the fact that [1-(G/H)] - [(F-G)/H] -2A/H, where A-(1- 2) cos*,

the partial series In Equation (2.142) can be re-written as

+ 4 i F() + 9 ._F 2 +T E n (1kR [ +32(lkRa)F2(2A 3  +--
Partial

( + 1 + 9 + (2.145)
[ 81k2 A 128(ikR2A) 2

Comparing this to the asymptotic expansion of the Hankel function

H(1)(z) (see, for example, Abramowitz & Stegun, 1964, Section 9.2.8)

-- 
.. ' - ". - "-" 

. . '

N0
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(1) ++ -.L + 9 + --1(2146)
H0  (Z i z L 8±z~ 128 (iz) 2  J

enables Equation (2.145) to be re-phrased as

CO * * ()1 [irikR 2Ac i -ikR 2A ~(kR A

nmO

* 2With the added fact that HGm(O+sin*) , the total solution given by

Equations (2.129) and (2.135) can be expressed in the final form

(rz) ikR1  IkR2
1 2R, R 2

-ik.R 2 Os i n gi(1 (2.148)

- kBwe  erfc(-iX) H1 )[kR 2(i- B2) cosW 2

20  e ,k
(0 + sin*) R Z Tn

nwo

2.3.5.5 The Solution Using the First Term Only. For many cases

of practical interest, the parameter kR2 is large
21 and the asymptotic

solution is rapidly convergent in the initial terms. Thus, using .only

21 As examples: At 1000 Hz., for source and receiver on the

ground and separated by 100 feet, the value of IR is 559. At 200 Hz,
for source and receiver 4 feet above the ground aid separated by 20
feet, the value of kR2 is 22.

'*4,..* . ..-.....-.*- .. - . -. *. - . . - . . . -,. .-. . - . . - ...

4 + 
+ e

,' ..- wi * -
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the first (n=O) term in Equation (2.135) often provides sufficient

accuracy. In such instances, the total solution can be written as

! ikR 1 ikR 2

,(rz) -e + e [R + (l - R F (2.149)
R 1 R2 p

where

F i + irX X e erfc(-iX) (2.150)!1
and, again,

-X /i~. + $sin*i -2 , 'COB* (2.151)

Re r"---> 0.

2.4 The Solution for Perpendicular Incidence

Although the asymptotic series solution is valid for *-900

(receiver directly above or below the source), an exact solution can

be obtained for this special case in a straightforward way. Thus,

when sin* - 1 is substituted into the original transformed integral,

Equation (2.67), and it Is noted that (1 C2 + 2M G + it)2 , the

integral can be re-written as

- -- -- , o . - - -. • . .*,-.-.-4*4-.* -*4 oo*S t.° *.**.***44*.-.4'. 4.- ** •*' 4 ,
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ik 2[1 + i(i + O)M
zI--2k8 f + ig) d&

i 2 I -kR(1 4 + (2.152)

= 21k~e 2 -a) d •

0

Using the relation (Graduhteyn & Ryzhik, 1965, Integral #3.352[4])

e- x  dx- - eEi(-i)
[X + larg(l< ; Rei>0] (2.153)

where Ei is the exponential integral defined by

w

Ei-(w -t-dx , (2.154)
ID

the integral I1 in Equation (2.152) becomes

1  -2ik~e EiL[ikR 2 (l + 0)] • (2.155)

Furthermore, Ei(w) has the convergent series expansion (Abramowitz &

Stegun, 1964, Section 5.1.10)

Ei(-w) - y + lnw + ( )n wn  (2.156)
nnlnn-1

where y is the Euler constant, Yn0.57721 56649... The exponential

Integral also has the asymptotic expansion for large argument

(Abramowitz & Stegun, 1964, Section 5.1.51)

~ -. -. U. *- t *''~'' *U**. * ~ *. -. ~'. ~.
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i(-w) -- fl_14 1-2 - . .3

w w (2.157)

- (-1 k! ; arg wl < 2

k-o

In summary, the total field at the receiver point for

perpendicular incidence (rO) is

ikRl ikR2  kR

(z) - aR + e _ 21ke 2 Ei[ikR2 (1 + 8)] (2.158)

in which R2 may be replaced by R2 - h = z + z0.

When kR2 is very large, the first term in the asymptotic series,

Equation (2.157), may be used so that the total field becomes

ikR1  ikR2  ikR2
0(z) - e.. + e. _ 2Be

Ri R2 R2(1 + 8)

(2.159)11ik i ikR 2

thus reducing to the "plane wave" solution (Equations [2.4] and [2.5]

with sin 4 - 1).

S, . , +-++r+ ,l .l +,:+. i + + _++ - ,+ ++.+ + + • • ,+ +++ .. i'



CHAPTER III

A 14ODEL FOR THE COMBINED PROBLEM OF

POINT SOURCE PROPAGATION WITH A DIFFRACTING BARRIER

When a barrier located on an Impedance plane obstructs the line

of sight from a point source to a point receiver, acoustic energy

reaches the receiver by diffraction over the edge of the barrier. The

"canonical" problem of point source diffraction by an ideal half plane

is relatively well understood; however, the attempts to apply its

solution directly to the problem here have met with little success.

This Is due to the fact that when a barrier is located on the ground,

the incident field at its edge is not a simple monopole field.

Instead, it Is a complex field resulting from the propagation over the

Impedance plane. Furthermore, the ground plane interactions on the

receiver side of the barrier most be accounted for when predicting the

total field behind the barrier#

In this chapter, an "Edge-Plus-Iuages" model will be described

that merges the propagation results of the preceding chapter with

half-plane diffraction theory. The mathematical model Is readily

programmable on a digital computer, and thus practical, engineering

calculations can be obtained with little trouble. Although the

following discussion is in terms of a vertical barrier on a ground

plane, the'results are general and may be applied to any thin, planar

protrusion from a flat, impedance-covered surface.
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3.1 The Geometrical Theory of Diffractioon

The use of Keller's Geometrical Theory of Diffraction (GTD) in

solving practical problems has met with universal success, and it will

serve here as the foundation in building the diffraction model for a

barrier on a ground plane. The derivation of the GTD formulation will

not be given here since this information is available in many texts as

well as in Keller's original papers on the subject (see the references

cited in Chapter 1). The predictions of the theory have been tested

and confirmed many times in both the fields of electromagnetics and

acoustics. Agreement with exact analytical solutions, when available,

has been excellent; correlation with experiments, in the absence of

mathematical solutions, has also been encouraging. Furthermore,

although it is in principle a high-frequency method, the GTD often

performs with a high degree of accuracy down to wavelengths comparable

to the size of the scattering object.

Essentially, the GTD supplements the approach of classaical

geometrical acoustics by including "diffracted rays," which, as

opposed to "specularly reflected rays," can penetrate into the "shadow

zone." And just as the law of conservation of energy flux in a

"bundle of rays" (Fermat's principle) leads to Snellos law for

specular reflection (angle of incidence - angle of reflection),

similar arguments applied to the diffracted rays lead to the "law of

edge diffraction." With reference to Figure 3.1, Fermat's principle

prescribes that the total path length for the edge-diffracted ray S-E-

P should be a minimum (out of all possible paths connecting the

,, , 9 " , r, ," * "," .' " . '' '' ,'Z"61" '....".-""'-.-.%..""''.-.
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RECEIVERP

D IFFRAC1ED
RAYS

INCIDE

RAY
/

SOURCE EDGEDGE

Figure 3.1 The Law of Edge Diffraction: Incident Ray and
Diffracted Ray Subtend Equal Angles 1 with the
Edge. Diffracted Rays form a Cone with Apex at
Diffraction Point E.
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points). Hence, the law of edge diffraction can be stated as: when

an Incident ray strikes an edge at an angle 8*the set of diffracted

* rays will comprise all those rays that also make an Angle 0 (in the

"forward" direction) with the edge. 22The resulting "cone" of

diffracted rays Is illustrated in the figure. If the edge is straight

(as it is in the present barrier problem), the point E will be unique,

and only a single diffracted ray will reach the receiver. 
23

Generally, the edge-diffracted field is described in the GTD

formulation by several factors: (a) a reference field at some point

along the ray, (b) a geometrical spreading factor depending on the

radii of curvature of the edge and of the incident and diffracted ray

bundles, and (c) a phase factor accounting for the propagation of

energy over the entire length of the ray path. The reference field is

- usually given at the point E on the edge and Is expressed in terms of

a "diffraction coefficient," which describes the ratio of the

diffracted energy to the incident energy. It can be shown that for a

spherical wave Incident upon a straight edge, the diffracted field at

the receiver point P can be expressed in GTD terms as:

22 The notation "S" for this angle has been adopted here in order
to be consistent with the customary usage In the literature.
Hopefully, the context will prevent any confusion with the admittance

23 If th e edge were not straight as shown, but curved, the angle

0 would be measured from the line tangent to the edge at the point E.
* Thus, the possibility for several rays reaching the receiver from

different points along the edge would exist.
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fR ikR
0diffl(P) " inc(E) D(oO,8) R2(R1 1 e 2(

00) r - + R2) (1

where the angles and distances are defined as in Figure 3.2. Here,

i"nc(E) is the incident field at the point E on the edge. For a

simple point source, therefore,
4,

"i tkR1

nc )  e (3.2)icR 1

The factor De is the diffraction coefficient for a straight edge; the

square root quantity is the geometrical spreading factor; and the last

term accounts for the phase along the ray from the edge to the

receiver.

'Probably the strongest advantage of the GTD formulation is that

all the relevant properties of the diffracting obstacle are contained

in the diffraction coefficient itself. If a wedge were being
I

considered instead of a straight edge, the diffracted field would have

the same form as Equation (3.1) only the diffraction coefficient would

be derived from wedge-diffraction theory. For objects with complex

geometries, the diffraction coefficient would be taken from the

canonical problem (half-plane, wedge, sphere, cylinder, etc.) that

most closely describes the local shape of the object at the

diffraction point.

4; - - -* .* . . . . A
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0 S P

S SIDE VIEW
(ro0, 0o, zo) 7r + r

Z Z- P
+ -(r, ,o)

(a)

TOP VIEW

S

PrrS

r 0 r(r, 0 , o)

(b)

Figure 3.2 Geometry of the Half-Plane Problem in Cylindrical
Coordinates. (a) Side View Showing Diffraction
Angles 00 and 0. (b) Top View Showing Oblique Angle 8.
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3.1.1 The GTD Solution for a Rigid Half-Plane

In Keller's original work on the Geometrical Theory of

Diffraction applied to the rigid or pressure release half-plane

problem, he deduced the diffraction coefficient from the first term in

the expansion of Sommerfeld-s exact solution. Thus,

ae0 2v'27r sin8 F o + 1.

D(008i e+f/ L+ (3.3)

C os 2 cos

rigid

+, pressure release

The diffraction coefficient has singularities at * -w + 00 and at

w - - 0, which correspond to the physical shadow boundaries as

shown in Figure 3.3. Furthermore, when sin --0, the solution becomes

invalid. This latter condition corresponds to z0 in Figure 3.3 being

very large relative to r0 and r.

Many researchers have modified the Sommerfeld coefficient or

derived independent expressions in terms of Fresnel integrals, which

remain valid in the transition regions of the shadow boundaries. The

more exact diffraction coefficient for a rigid half-plane can be

written (Hayek, in Varadan & Varadan, 1982) as
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+7/r -T1

Figure 3.3 Angles Defining Incident and Reflection Shadow
Boundaries.
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D(,.o) = sin (A) " e~ (1 - r2 •-ir/4 F*(IAI)J0 / 2 sin8

(3.4)

+ sxn (B) r e -L 2 [1- e-iT/4 F*(IBI) ,

AN 2 siO

where sgn(x) means the sign of the argument x, and

A V cos C -2 ,

B-''i

2R R (3.5)
1 2 2

L sinB

and F*(x) C(x) +i S(x)

x x

where C(,) ./- cost 2 dt , s(x) - Jsint2 dt

o 0

are the Fresnel cosine and sine integrals, respectively.

3.1.2 The GTD Solution for an Impedance Covered Half-Plane

* Recently, an exact integral solution has been derived (Kendig,

1977) for the diffraction by a half-plane with locally-reacting

Impedance surfaces. The advantage of this solution over a similar

contribution by falyuzhinets (1955, 1962) is that Kendig's exact

: ~~~~~~~~. .. ................. .. .... ... .-.... ....-. .+.-...-..-*i-'-.----'-- .. . .. ,
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integrand is in closed form, thus allowing asymptotic techniques to be

applied to the integral for its evaluation. The resulting solution

has been adapted to the GTD formulation (Hayek, et al., 1978) and the

diffraction coefficient can be written:

De(* o8) sgn (A) $0($) vie -ikADi ( 1 - r2 e- i r/ 4 F*(IAI)l
e 0 sin B(

sgn (B) 02() V e-ikB -(3.6)

sin 8 [1 - a F*(IBI)]

in which the parameters are defined by Equation (3.5). In addition,

the special functions 01 and 02 contain the Impedance information and

can be expressed as

.,2 " r. + r sin 0 (r. r2)  (3.7)

in which
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F,, [sinO + sinOl1,2 i, ,o + o -Cs'
asine + 2 cos os 4 sin

2, 4c 4
{sin + 2 cos:0 ':+

{sinc± + o 0 o ±sin (0(38
I

The impedance of the half-plane surfaces has been expressed in terms

of the so-called "Brewster" angles 0+ , for the face at 0 = +r, and -,

for the face at 0 - -7r, where

sine- P . (3.9)
Z± sin$

Because the field at the receiver is affected more by the

Impedance on the insonified (source-facing) surface of the half-plane

than by that on the "dark" surface, an expression for the case when

- 0 (rigid) and 6+ arbitrary might be useful for practical cases.

Thus, for the impedance-rigid half-plane, the special functions

become:

sin2  r cos , (3.10)
124e 2 4 j

where
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-F -(sinO- sin+) cos*/4 (3.11)

[s Iie + 4coosICos ICos 40..j + ij +(.1

and

[ine~ + 4 cos coo Ii (3.12

r2 "(3.12)

ine+ 2 cos cos sin 0

3.2 The GTD Model for the Barrier on a Ground Plane

Having defined the edge-diffraction coefficients to be employed

in the Geometrical Theory of Diffraction formulation, it is now a

simple matter of incorporating the ground effects into the model.

Just as the diffraction effects were lumped into the coefficient

D( O, ,O) in Equation (3.1), the incident field at the barrier edge is

totally contained in the term Oinc(E). When a locally-reacting ground

plane is present beneath the source, 0inc(E) is no longer a simple

monopole field but instead represents the total field that exists at

the edge point E. This field is derived from the ground propagation

solution described in Chapter 2 and will be modelled as a super-

position of two ray paths-the direct path and the ground-reflected

"Image" path. Similarly, the energy spreading from the point E on the

edge to the receiver does so via direct and ground-reflected paths.

The ground reflections are handled by simple geometrical acoustics;

however, the "spherical wave reflection coefficient" is used.

, . .+ -. . .,' .+- . . ..- - ,. .". + . .. +. ., •.- +.- -. . . . •+' ' . ,- . - - - ., -.
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The construction of the "Edge-Plus-Iuages" model can best be

explained with the help of illustrations. Figure 3.4 shows

schematically how the propagation from source to reciver can be

modelled as a superposition of four distinct half-plane diffracted ray

paths. In Figure 3.4 (a), the "direct" ray from source-to edge-to

receiver does not interact with the ground and so is represented by

the standard GTD half-plane equation. The diffraction coefficient can

be either that from Equation (3.6) for an impedance-covered barrier or

that from Equation (3.4) for a rigid barrier. I. the equations in

Figure 3.4, the geometrical spreading factor A(la,Rb) is simply (see

Equation [3.11)

a%b -a (Ra +Rb)

In Figure 3.4 (b), the source-ground-edge-receiver ray is still

modelled as a half-plane diffraction problem, but the incident ray is

assumed to originate from the source "image" in the ground SI and is

correspondingly modified by the spherical wave reflection coefficient

QS (*I,Z 1,R3). In the most general sense, this reflection coefficient

is as given by Equation (2.140), but in almost all practical

situations, the first term in the expansion provides sufficient

accuracy. Therefore, the model has been implemented here using F1 , as

defined by Equations (2.149) and (2.150), for the ground reflections.

As indicated, the factor Q S depends on the reflection angle *1, the

ground impedance on the source side Z1 , and the image-to-edge distance

Le , ' . ' '.. . -

. . . . . . . . . . . . . . . .. . .. . . . . . . . . . . . . . . . . . . . . .



101

NI 0

cc -L

I -- 0

9.4

0 a

a.jar
aa



-. 
. .. - T -

102

I
-'44

0

a0

0 $4

I-I 4-r

~4

A 0u

0 0

*u

A4 1 4J

IAA

o to



103

0
ALU

SICC

'00
b, A

%05 -

A.0

F44. i

I 0 LUUIr.

I -r

= a *4 4c4- ~E"4
0. '0



-77 :;7 'W'

104

Iu

0s

C~j Pk 0 4

sq. o

00
- 0

CA4-

% q ~ .S

* ow

a hJ~dA



105

R3. It is interesting to note that the edge-to-receiver distance R4

for this path differs, in general, from the analogous distance R2 for

path 1. This is a consequence of the law of edge diffraction. Since

the incident ray is coming from the source image and not the source

itself, it makes a different angle with the edge and defines a

different "poirit E" along the edge. Therefore, the exit ray to the

receiver (making an equal angle with the edge) must correspondingly

change in length. The diffraction coefficients reflect this fact

also, and thus the notation for the De's has subscripts on the angle

0.

Similar reasoning applies to path 3, the source-edge-ground-

receiver ray, where QR 1 ( 2 ,Z2 ,R6) depends on the properties of the

ground on the receiver side of the barrier. To model the final

source-ground-edge-ground-receiver path, two reflection coefficients

QS2 and QR2 are required, as indicated. Note that since a different

angle 0 is again defined by this ray path, the ground reflection

angles *3 and '04 are generally not equal to '1 and *2' respectively.

The total diffracted field at the receiver is

diffto t  diff + 0diff 2 + 0diff3 + diff . (3.14)
II

If the receiver were located outside of the acoustic shadow cast

by the barrier-note: each ray path shown in Figure 3.4 defines its

own shadow boundaries-then the appropriate non-diffracted geometrical

fields must be added to the above solution to obtain the total field

at the rnceiver. That is, with reference to Figure 3.3,

- .', . : , -/ --. .--.--. -..-. -. :.. '.. .'.... --. .-.-. ,. .... *..--*.. ... . .,.. .,. ... .. ... - ....



• , - I- -i , -- o : . i r . .' "oI . -" . " 
" 

° • - " .

106

0tot - 0difftot  -7 <  - 0

0tot M Pinc + 0difftot  -I+ o S 5 <  (3.15)

0tot = 0inc + 0ref + 0difftot  7- o S S 7

where 0 is the direct field from source to receiver, and 0 isinc ref

the barrier-reflected field.

Several limiting cases, which simplify the model equations in

Figure 3.4, may be of practical interest. Thus,

(a) When the source ground is rigid, Q - Q = 1.0
1 S2

(b) When the receiver ground is rigid, Q R 2  1.0

(c) When the source is on the ground, Q Q

R 7 ; R - R R = R81 3 2 4 6

W and = QSI QS2

A, M A2  and A3 -A 4  ; therefore, D e De

and D =D. e3

(d) When the receiver is on the ground, Q Q

R -R R R and R-
2 6  R8 ; 1 5 3 7'

; 8183 and 8284

A, = A and A -A ; therefore, D D
1 3 2 4 e 1  e3

and D =De2  e4
2 4
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(e) When the source and receiver are both on the ground,

'diff 2 - QS diff 1 diff3  QR iff1

and (PQdiff 4 -S R diff1

(f) When the source and receiver are both on a rigid ground,

0diff tot 40diff 1

~~~~~~~~~~~~~~. .............. ... . .. .. . . , . . . . . . .-.• _..,-. .. , , , ;



CHAPTER IV

* NUMERICAL RESULTS

The mathematical solution for the spherical wave propagation

problem, as well as the model developed for barrier diffraction, are

functions of several geometrical and physical parameters. To

determine how the sound field at the receiver predicted by the

spherical wave theory differs from that predicted from the classical

plane wave theory, numerical results for several representative

source-receiver geometries will be presented in this chapter. For

propagation in the absence of a barrier, the dependence on the

parameter kR, the reflection angle Pand the ground impedance ZN

will be Investigated. When a diffracting barrier is prese7- the

dependence of the field on barrier height and di'- t,.o tion angle will

also be studied.

In practice, it may be important to know when a problem demands

the use of the more exact spheric: l wave theory, since the gain in

accuracy could be significant. Conversely, the plane wave solution is

extremely simple, and its accuracy may be sufficient enough to make

its use economically advisable. This is particularly true for

problems in which a continuous, physically-extended source of sound is

* being modelled as a sequence of point sources (such as the flow. of

highway traffic), and for which the field calculations, therefore,

* must be performed many times.
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4.1 Numerical Results for the Ground Propagation Problem

This section presents graphical data predicted from the ground

propagation theories given in Chapter 2. The ground plane is assumed

to be locally-reacting with its Impedance specified by real anxd

Imaginary parts (since the time convention e- has been adopted

here, a positive Imaginary part X of the impedance Z,=R+iX corresponds

to a "springlike" reactance). Data from the spherical wave theory

derived in this study is presented in two forms, representing two

levels of complexity. First, the full asymptotic series solution is

used as the most accurate description of the field; second, only the

first term in this series is employed, as an approximation.

Preliminary tests have shown that both of these forms are so close to

the exact solution for many practical impedance and geometrical

conditions that graphs of the data would essentially show one curve.

For this reason, the values of the parameters chosen for many of the

following plots are deliberately "atypical" so that differences in the

data may be seen and studied.

4.1.1 Dependence on the Parameter kR

As noted in the derivation in Chapter 2, the asymptotic series

solution for the point-to-point ground propagation problem approaches

the exact (integral) solution as the parameter kR increalses in value.
2

Fo r kR 2 >> 1 the series--in Equation (2.130), for instance--is

extremely convergent and accurate in the first few terms, well below
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the point where the terms begin to diverge. As kR2 gets smaller, more

terms are necessary for accuracy, yet, correspondingly, the onset of

divergence occurs sooner. Finally, when kR2 is very small, divergence

is immediate, and increasing the number of terms only degrades the

accuracy of the solution.

For very large kR2 , the curvature of the wavefronts becomes

locally "plane" in the vicinity of the ground reflection point, and

the asymptotic solution should approach the desired plane wave

solution. That this is indeed the case is confirmed by the numerical

data.

The graphs in this section, as well as most of the others in this

chapter, compare four descriptions of the sound field at the receiver.

The numerical data were calculated on a digital computer (IBM Model

3033 Processor) from (i) a fine-point numerical integration 2 4 of the

exact integral expression in Equations (2.93) and (2.101), (ii) an

"optimal" number of terms in the formal asymptotic series solution

given by Equation (2.128), (iii) the first term in the latter series

as represented by Equations (2.149) - (2.151), and (iv) the plane-wave

reflection coefficient form of the solution, Equations (2.4) and

(2.5). For calculations using the asymptotic series, a truncation of

the series was made at the point where the terms just begin to

diverge--although always including a minimum of two or a maximum of

fifteen terms. The solution using only the first term in the series

24 The numerical integration was performed using a standard five-

point Newton-Cotes quadrature technique taking a finer and finer mesh
of points until the desired degree of convergence was obtained.



Is referred to as the "F-term solution" in the following discussion.

To facilitate comparisons of the data within each graph, the

curves in this chapter have been drawn as straight line segments

joining discrete, calculated points. Strictly speaking, then, the

values on a line segment between two calculated points do not

represent valid data, and the apparent "Jaggedness" of the curves in

some regions is not indicative of the true shape of the data. The

number of calculated data points may vary from one plot to the next,

but they are always equally-spaced along the axis, and their actual

locations can usually be deduced, if necessary.

The data for the case where both the source height (Sht) and the

receiver height (Rht) are 1.0 feet above the impedance plane, and

vhere the separation (Sep) is 38 feet (corresponding to a reflection

angle of P -30 ), are plotted in Figure 4.1 (a) and (b). The normalized

ground impedance has been assigned the relatively low value Z N -(0.3,

0.5). The vertical axis for Figure 4.1 (a) is in terms of the

attenuation, defined as

Attenuation m-20 l081 0 dir dB (4.1)

where 4 is the total (direct plus reflected) field at the receiver,tot
ikRand *di is the direct field only (e 1/R1) The latter is the

"free" field that would have existed at the receiver in the absence of

the ground. The same quantity defined by Equation (4.1) is sometimes

referred to as the "excess attenuation relative to spherical
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1*

spreading." Finally, it should be noted that a negative value of

attenuation means that the received field has been enhanced relative

to free field level.

Figure 4.1 (b) presents the sane data in terms of the magnitude

of the ratio of reflected to direct energy. In practice, this form of

presentation may be more useful for pulsed or transient experiments in

which the direct and reflected waves can be measured separately. For

reference, the reflected term 4 ref for each curve is given as follows

(with quantities defined in Chapter 2):

1) Exact Integral:

- R -L-4iB -ikR 2 [t +2Bt]eikR 41k$Beik-d2 e

* dt (4.2)ref f2  ( + sin *,) / t2 2Bt %

F

2) Asymptotic Series:
ikR 2  ik 22 4ikBBe

2Ve418B T[e E +-C K (4.3)
ref - f (R + sin*) n 0En + n2 2 'n-O

3) First Term Only:
ikR 2

ikR2

4) Plane Wave: R _- --e R . (sing ) (4.5)ref 4 p 12 P (sin* + $)

As expected, and as is readily apparent from either Figure 4.1

(a) or (b), the plane wave solution (long-dashed line) is not very

accurate for this near-grazing incidence geometry. On the other hand,
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the asymptotic series solution (solid line) agrees well with the exact

integral (short-dashed line) for kR2 > 3, a surprisingly low value for

kR 2 . Below this value, the series is divergent, and the predictions

become erratic. The medium-dashed line shows that using only the

first term in the full solution-the F-term solution- gives very good

agreement, differing by a few dB for medium values of kR2 .  It is

remarkable, though, that the F-term solution yields very good

predictions down to kR2 - 0.1, corresponding, for the distances

considered here, to a frequency of 0.03 Hz.

All four solutions eventually agree when kR2 is sufficiently

large. Physical intuition predicts this-the wavefronts "look" like

plane waves-but it can also be deduced from the governing equations.

For example, with reference to Equation (4.4), as kR2 gets large, A

also gets large, and F1 can be shown to have the asymptotic expansion

(see, in part, Abramowitz & Stegun, 1964, section 7.1.23):

2 1 1"3 1-3-5
F " 2iAX e -  H[-Im(A)] (4.6)

2  4 6
2X 4A 8X

where the Heaviside operator

1; Im(z) > o
H( z] (4.7)

0 ; Otherwise

is necessary to account for the fact that erfc(-z) = 2 - erfc(z).

4 Thus, F1 becomes negligible as kR2 gets large, and Equation (4.4)

reverts to the plane wave solution.

.j.'. . . . . . . ... -. . . - . . . .C

- ,.,-'-", ', . .- . ..-. --... ...... ........ ...
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The attenuation plotted in Figure 4.2 (a) and the ratio of the

fields in Figure 4.2 (b) are for the same source-receiver geometry as

in the previous case, but for a higher ground impedance, ZN - (2.0,

3.0). Two observations can immediately be made when Figure 4.1 and

Figure 4.2 are compared. First, the exact, the full asymptotic

series, and the first-term-only solutions are in very close agreement,

even for values of kR2 down to 0.1. In fact, for kR > 4, the

predictions are essentially identical. Second, the "overall" level of

attenuation is lower for the higher impedance ground. This trend is

also not surprising, and in the limit of a rigid ground, both the

classical theory and the present spherical wave theory predict a

"gain" of -6 dB.

Some further, less obvious, conclusions can be drawn from the

results of Figures 4.1 and 4.2. The peak of maximum attenuation

(centered at about kR2 =20 for ZN=[O.
3 ,0.S1 and at about kR 2=150 for

ZN-[2.0,3.0]) is not a result of propagation path length interference,

but rather is strictly an "impedance effect." For a fixed geometry,

this maximum will move to higher and higher frequencies as the

impedance increases and will eventually disappear or "merge" with the

first true path length interference peak in the limit when the ground

becomes rigid.

Figure 4.3 illustrates the numerical results for the case where

source and receiver are both directly on the ground (i - 00) and

separated by 57 feet. The impedance is the same as in Figure 4.1, ZN

- (0.3, 0.5). The plane wave curve is not shown here, since the
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predicted attenuation would be infinite for all values of kR2

(Rp - -1, R1IR 2). The asymptotic solution again gives extreme

accuracy for kR > 4, while the F-term solution differs by only a few

dB over most of the range.

An interesting fact can be observed in either Figure 4.1 (a) or

in Figure 4.3. That is, for very low kR the exact solution (as well
2'

as the F-term solution) predicts a gain of the order -7 dB. Thus, the

field at the receiver is actually higher than that which would exist

if the ground were perfectly reflective. This is again a direct

effect of the finite ground impedance and has been referred to in

various ways in the literature, among them the "surface wave effect,"

a "ducting of energy," a "focalization" phenomenon, and a "surface

layer effect." Whatever the terminology, this phenomenon--the gain

could be higher than 7 db-is a testament to the fact that the

reflected wave is not spherically symmetric, but that instead energy

is "re-radiated" along the entire boundary. This re-radiation is with

different phases from different points along the surface and could

result in constructive interference at certain field points.

Some conclusions about the effect of increasing the reflection

angle can be drawn from the next pair of plots in Figure 4.4 (a) and

(b). Here, the source and receiver have been raised to five feet

above the ground (*-100 ), and the impedance is ZN=(0.3, 0.5) in the

former and ZN-(2 .0, 3.0) in the latter. The counterpart cases are

those in Figures 4.1 (a) and 4.2 (a). Comparing Figure 4.1 (a) to

Figure 4.4 (a) and Figure 4.2 (a) to Figure 4.4 (b) shows that the
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61 peak of maximum attenution shifts to lower values of kR2 as

increases. Inherent in this trend is the fact that the range of kR2

for which the plane wave solution becomes valid begins at a lower

value when the source and receiver are situated at a higher elevation

above the ground. Furthermore, for each impedance case, the overall

attenuation decreases as * gets larger, due to the fact that the

ground appears "harder" at larger reflection angles. It might be

interesting to note that the second peak in both Figure 4.4 (a) and

(b) (at kR2 = 500) is, in fact, due to path length differences and

hence does not shift significantly as * goes from 3° to 100 (R1

R 2-). Conversely, the impedance peak shifts by more than an order

of magnitude.

To complete this section, numerical results for a case of a very

large angle of reflection and a very low impedance are presented in

Figure 4.5 (a) and (b). The source height is 10 feet; the receiver

height is 20 feet; the separation is 30 feet ( -450); and the ground

impedance is ZN-(0.4 , 0.3). Here, the impedance-effect attenuation

peak has shifted to a very low value of kR2, and path length

interference prevails for kR2 > 10. The plane wave solution yields
i2

predictions as accurate as the F-term predictions for all kR2 greater

than about 5.

Table 4.1 summarizes the geometry and Impedance conditions for

the cases plotted in this section.

. .
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4.1.2 Dependence on Reflection Angle

To investigate the dependence of reflection angle 1) on the

received acoustic field, it is necessary to hold the parameter kR2

constant. Thus, the approach 13lustrated in Figure 4.6 was u~sed for

generating the numerical data plotted in this section. The source

image-to-receiver distance R2 the source height, and the frequency

are held constant as the receiver point revolves around the image. In

this way, iJP varies from its initial position with the receiver on the

ground to its final value of 900. Of course, R 1 also will vary with

the angle ,but all of the parameters in the reflected field terms

will remain constant.

The results plotted in Figure 4.7 and Figure 4.8 compare two

values of the parameter kR 2for a low value of ground impedance Here,

the source height is fixed slightly above the ground at 0.1 feet; R 2

is 12 feet;ZN-(1.2, 1.8); and kR2 ' 6.7 (frequency - 100 Hz.) in

Figure 4.7 and kR 2- 33.5 (frequency - 500 Hz.) in Figure 4.8.

The asymptotic series solution is indistinguishable from the

exact integral solution for all values of 1, and only very slight

differences can be detected with the F-term. form of solution. On the

contrary, the plane wave solution is totally inaccurate for small

grazing angles yet improves as J increases. For the low value of k

- 6.7, this improvement is not significant until 1J is greater than

300 , whereas for the modestly-high value of kR2 - 33.5, the plane wave

solution is highly accurate for values above ' -5 0

*. .. . . . . . . -
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The response curves of attenuation vs. reflection angle will be

different for different ground impedances. In Figure 4.9 are plotted

four sets of curves corresponding to four values of impedance that

differ by factors of ten from each other. The plane wave solution is

compared to the F-term solution only, since the latter has been

consistently close to the exact and asymptotic solutions. The value

of kR2 has been fixed deliberately low to force differences in the

solutions so that the trends in the data could be observed. Here, the

source height is at 1.0 feet; R2 is fixed at 12 feet; kR2  3.35

(frequency -50 Hiz.); and the four values of impedance are as shown on

the graph. As expected, the bottom two sets of curves show that as

the impedance increases from ZN=(1.0, 0.5 )to ZN=(10-0, 5.0), the two

solutions, fall closer into accord. However, the top two sets of

curves show the opposite trend. For the extremely low impedance

ZN-(0.01,0.005), the solutions are identical, yet as the impedance

increases tenfold to Z Nm(O.1,O.OS), the predictions begin to differ.

This is an interesting result, but it should not be surprising. The

plane wave theory, based on the image method, is exact for either

infinitely rigid or pressure release surfaces. Therefore, as Z-et-0,

the plane wave solution becomes more accurate, and it should agree

with the spherical wave F-term solution.

The geometry and impedance conditions for the cases plotted in

this section are summarized in Table 4.2.
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4.1.3 Received Spectra Over a Practical Ground Cover

In several of the previous graphs, the value of ground impedance

was held constant as kR 2 or frequency varied. While this may be

necessary for studying the sensitivity of various parameters, the

impedance of actual surfaces is rarely frequency-independent. The

problem in practice is more often: given a ground surface between a

source and a receiver characterized by its impedance measured at

several discrete frequencies, predict the attenuation at the receiver.

A common ground cover is outdoor grass, and one particular type-the

-called NR 25 grass--has the third-octave values of impedance shown

* in Table 4.3. Using the values of frequency and impedance given in

the table, plots of attenuation versus frequency have been generated

and are plotted in Figures 4.10 - 4.12. The first two of these graphs

shows the effect of symmetrically raising both source and receiver,

while keeping the horizontal separation constant. Thus, with a

separation of 50 feet, the source and receiver move from 0.1 feet

above the ground (VPm0.23 0) In Figure 4.10, to 1.0 feet (IP-2.3 0) in

Figure 4.11 (a), and to 2.0 feet (*-.4.5 0) in Figure 4.11 (b).

Although the Impedance is not constant here, the trend of the

attenuation maximum tuoving to lower frequencies and the overall

attenuation decreasing with increasing 'P noted In section 4.1.2 is

still apparent. Again, the plane wave solution becomes more accurate

2The impedance of this outdoor surface was measured by several

methods at the National Research Council in Ottawa (Embleton, et al.,
1975); hence the abbreviation in the name.
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Table 4. 3

Real and Imaginary Parts of the Impedance
of Outdoor (NRC) Grass for Third-Octave Values of Frequency.

Frequency Real Imazinary

*63 20.0 28.0

80 18.0 26.0

100 18.0 24.0

125 16.0 22.0

163 14.0 19.0

200 13.0 17.0

250 12.0 14.0

315 9.9 12.0

400 9.0 10.0

500 8.0 8.0

630 6.0 6.0

800 5.0 5.0

1000 4.0 4.0

1250 3.0 3.0

1630 2.5 2.5

2000 2.0 2.0

2500 2.0 2.0

3150 2.0 2.0

4000 2.0 2.0

5000 2.0 2.0

6300 2.0 2.0

8000 2.0 2.0

10000 2.0 2.0
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for larger angles of reflection. Of practical interest is the fact

that the grass-covered ground appears rigid (attenuation - -6 dB) for

* frequencies below about 800 Hz. The low-frequency noise of

automobiles and trucks is not well-attenuated over grassland.

The data in Figure 4.12 are for source and receiver both 1.0 feet

above the ground and separated by 500 feet. In this case, then, the

reflection angle is the same as for the case plotted in Figure 4.10,

namely *~ -0.23 0, but the distance R2is larger. With reference to

Figure 4.10 (b) and 4.12 (b), it can be seen that the reflected field

for the plane wave has not changed at all since R is independent of
p

R2; however, the spherical-wave reflected field is quite different in

* Figure 4.12 than in Figure 4.10 because the F-term itself depends

* a explicitly on R2 (see Equation 4.4).

To conclude this section, data for near-grazing propagation over

a 8rcund surface comprising an indoor-outdoor carpet material is

presented in Figure 4.13. The impedance value. for the material are

given in Table 4.4. This particular carpet has found use in reduced-

scale model experiments (Lawther, et al., 1980), and hence the

frequencies in both Table 4.4 and in Figure 4.13 are higher than those

presented thus far. The interesting feature in the plotted data is

that the "gain" is well in excess of -6 dB for several values of

frequency. This is most clearly shown in Figure 4.13 (b) where the

magnitude of the reflected field, given by Equation 4.4, can be more

than 3 times as great as the direct field.
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Table 4.4

Real and Imaginary Parts of the Impedance

of Indoor-Outdoor Carpet Material

for Third-Octave Values of Frequency.

Frequency Real Imaginary

500 20.00 25.00

630 15.00 20.00

800 9.00 18.55

1000 2.53 13.02

1250 2.44 12.13

1630 1.41 7.41

2000 1.52 9.63

2500 0.74 4.26

3150 0.80 3.29

4000 0.91 2.38

5000 1.90 1.52

6300 1.99 3.47

8000 1.77 2.04

10000 0.34 -0.59

12500 0.63 0.89

16300 0.40 0.12

20000 0.51 0.11

25000 0.63 -0.12

31500 0.74 -0.23

62500 0.80 -0.40

80000 0.90 -0.23
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' The geometry and impedance conditions for the plots given in this

section are summarized in Table 4.5

4.1.4 Results for Perpendicular Incidence

* . The exact solution to the problem of point source reflection by

an impedance plane for perpendicular incidence is given in Section 2.4

in terms of the exponential integral. For small arguments the

exponential integral could be expressed in a convergent series

expansion, and for large arguments, it can be written in terms of its

asymptotic expansion. As has been shown, the first term in the

asymptotic series will generate the plane wave solution given by

Equation (2.159).

Plotted in Figure 4.14 are the magnitudes of the ratios, in dB,

of (a) the total field at the receiver to the free field and (b) the

reflected field at the receiver to the free field for a source 3.0

feet, and a receiver 1.0 feet, above the ground plane, respectively.

The impedance of the ground is ZN - (1.4, 1.3). The short-dashed

curve represents the exact solution to the perpendicular incidence

4problem, obtained by numerically integrating Equation (2.152). The

medium-dashed line is the calculated solution using the first two

terms in the convergent series expansion of the exponential integral,

Equation (2.156), and the long-dashed line is the solution using the

first two terms in the asymptotic series, Equation (2.157). Finally,

the solid line curve is the plane wave solution.
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It can be seen that the predictions using the first two terms in

the convergent series is very accurate for kR 2 < 1 but veers

erratically for values above that. When the first two terms in the

* asymptotic series are used, on the other hand, excellent agreement

with the exact solution is obtained for kR 2  ,3, whereas the plane

wave solution (referring to Figure 4.14 [b]) requires kR 2 50 or so.

It should be emphasized that these results are for a relatively low

value of impedance, and that for most practical impedance surfaces (in

acoustical studies in air) the plane wave solution will be much more

in accord with the exact solution.

Whether the value of kR2 is small or large, there is one ground

impedance region for which the plane wave solution, if used, should be

applied with caution. That is where the value of admittance8- 1

From Equation (2.159), it can be seen that the reflected field

vanishes for 0-1, and the attenuation becomes zero. Physically, this

is simply the ideal "matched" condition where Z N-1 (unnormalized

impedance - Pc), and no energy is reflected. The spherical wave

theory, however, does predict some reflected energy for this case.

Figure 4.15 (a) and (b). show the familiar "standing wave pattern"

that is obtained when the source is held fixed at some distant point

above the plane (here, 100 feet) and the receiver is moved away from

the surface. Experiments based on this standing wave pattern (using a

pressure microphone or hydrophone) are often conducted to calculate

the value of surface impedance. The ground impedance in Figure 4.15

(a) is Z N -(1.0, 0.05) and in Figure 4.15 (b) is ZN (1.0, 0.005).
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Although the scales on the vertical axes are greatly expanded, the

difference in. the theoretical predictions could be important in

practice.

4.2 Results for the Barrier Diffraction Problem

This section presents numerical results from the combined sound,

propagation-barrier diffraction model described in Chapter 3. The

ground on either side of the barrier is again assumed to be locally-

reacting, and an arbitrary impedance may be assigned to each side

separately. The source and receiver can be located at any non-

coincident points, although the GTD method may become inaccurate if

either is closer than a few wavelengths from the edge. The barrier

itself will be assumed rigid for the present calculations.26 The

relevant parameters to be investigated in this section are again kR

and ground impedance ZN, but in addition, the dependence of the

predictions on the barrier height and the diffraction angle * will be
examined.

The attenuation as defined in the previous section will again be

plotted, since it is a useful quantity for comparing one solution to

another or for comparing one geometry to another. In noise control

26 Although the theoretical solution for an impedance-covered

half-plane was presented in Chapter 3, prior sensitivity studies
(Hayek, Lawther, Kendig, & Simowitz, 1978) have shown that the
differences in the sound field for the Impedance barrier relative to
the rigid barrier were not significant for most practical cases.
Computations using the diffraction coefficient given by Equation
(3.6), then, were deemed unecessary for the purposes of the present
study.

,....... . ... ........ ..
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practice, however, a more informative quantity is the "insertion loss"

of the barrier, which relates the actual field at the receiver to the

* field that would have existed there in the absence of the barrier (but

in the presence of the ground). Thus, graphs of the data will also be

given here in terms of the insertion loss, defined formally as

i ~barrierot

Insertion Loss - -20 1lo tot dB , (4.8)
g % "round totI

where barrier is the total field at the receiver point when the
tot

barrier is present and *groud is the received field over the
tot

impedance plane alone. Note that the latter field must be calculated

separately, using the ground propagation theory of Chapter 2. Because

the Edge-Plus-Images model uses only the first term in the asymptotic

series solution to compute the ground reflections, the calculation of

.groundto t for the insertion loss data has also been performed with

only the first term (the solution given in Section 2.3.5.5).

Some interesting features of the Edge-Plus-Images model should

perhaps be pointed out before discussing the numerical results.

First, because the critical angles defining the acoustic diffraction

are measured from the top of the barrier edge (refer to Figure 3.2),

the actual (absolute) location of the ground is of secondary

importance. That is, from the standpoint of the model, the ground

need not be horizontal. The configuration depicted in Figure

4.16 (a), which might represent a barrier on a hillside, is

4mathematically identical to that shown in Figure 4.16 (b), which could
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Figure 4.16 Several Configurations that can be freated by the Edge-
Plus-Images Model. The geometries in (a) and (b) are mathematically
equivalent. In (c) the ground need not be horizontal, and in (d) the
barrier height need not be constant.
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represent a "tilted" barrier on a horizontal ground. Furthermore,

since the ground may have different "slopes" on either side of the

barrier, geometries such as that in Figure 4.16 (c) can be addressed

by the model (provided the source and receiver "images" in the ground

remain on the same side of the extended half-plane as the source and

receiver themselves). Finally, since the location of the edge point E

(Figure 3.1) determines the diffraction angles, the "height" of the

barrier need not be constant relative to the ground. Therefore, a

very general configuration such as that illustrated in Figure 4.16 (d)

can be solved by the Edge-Plus-Images model.
27

4.2.1 Dependence on the Parameter kR

Figure 4.17 (a), (b), and (c) shows the geometry of the barrier

problem and defines the parameters which will appear on many of the

graphs in this section. Rather than investigate the dependence on kR1

* and kR2 separately, the following data will be plotted in terms of kR,

where R is defined as R - R + R Furthermore, in all of the
1 2*

following cases, the distances R and R2 have been kept approximately

equal in value. The data plotted in Figure 4.18 (a) and (b) is for a

source located 0.2 feet above the ground (Sht) and "offset" from the

barrier by 12.0 feet (Soff), while the receiver is located 0.1 feet

27 Of course, some basic solid and analytic geometry is necessary
for computing the locations in space of the various image points and

propagation paths. Included in the computer program implementation of
the present model are several geometrical subroutines for performing
these tasks.
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Figure 4.17 The Geometry of the Barrier-on-the-Ground Problem,
showing Parameter Definitions for Graphical Data.
(a) perspective veiw. (b) side view. (c) top view.
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above the ground (Rht) and offset by 12.0 feet (Roff). The barrier

height (Bht) is 1.0 feet and the ground impedance is ZN f (1.5, 2.0)

on each side. As shall be true for most of the plots in this section,

the source-receiver ray is perpendicular to the barrier (z0 = 0 and

i " 900).

Three curves are drawn corresponding to calculated data using (i)

the "half-plane" theory (long-dashed line), (ii) the "plane wave"

theory (short-dashed line), and the (iii) "Q-term" theory (solid

line). For the half-plane computations, only the "direct" diffraction

path (Path 1 in Figure 3.4 [a]) is used, as though the ground were

absent and a semi-infinite barrier existed. The plane wave solution

accounts for all the diffraction paths, but the plane wave reflection

coefficient given by Equation (2.4) is used in place of the spherical

wave reflection cofficient Q. The data computed with the Q-term

solution is the most accurate of the three and employs the first term

in the spherical wave reflection coefficient given by Equation (2.40)

(that is, where "F" is simply replaced by "F1" from Equation [2.150]).

In all cases, the diffraction coefficient D is that given by Equation
e

(3.4).

The curves show some interesting features. The Q-term shows a

broad peak in the attenuation (and insertion loss) similar to that

found in the previous ground propagation graphs. This is again due to

an "impedance effect," as path length interference can not occur in

this kR region. For very large kR, the plane wave solution agrees

with the Q-term solution, as expected, since in this region the
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spherical wave reflection coefficient reduces to the plane wave

reflection coefficient. However, the two predictions are very

different for smaller values of kR. This can be explained as follows.

Due to the short barrier height, the ground reflection angles on

either the source or receiver sides are small (approximately 50) and,

6onsequently, the plane wave reflection coefficients approach -1.0.

Therefore, instead of showing a gain over free field as predicted by

the Q-term solution, use of the plane wave reflection coefficient

shows an attenuation of about 20 dB.

The curve generated from the half-plane theory is inaccurate over

the full range of kR considered here. The only discernible trend is

the gradual increase in attenuation, reflecting the fact that the

diffraction coefficient in Equation 3.4 decreases with Increasing kR.

The insertion loss data in Figure 4.18 (b) reveals an interesting

fact. Namely, for large kR the predicted insertion loss is negative,

indicating that the field at the receiver behind the barrier is

actually greater that it would be without the bri.28The

explanation for this phenomenon is simple: In the absence of the

barrier, the reflection angle from source to receiver is of the order

of 0.70, and the "propagation loss" over the relatively "soft"

impedance plane would be large. The barrier essentially forces the

reflection angles higher (about 50), causing the ground to appear

2This is also true for low values of kR, but the attenuation is
likewise predicted to be negative there. Moreover, both the ground
propagation theory and the GTD are extremely accurate for "large kR,"
and hence the assertion of negative insertion loss can be made
confidently.
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"harder," and thereby reducing the propagation loss.

The numerical data in Figure 4.19 (a) and (b) is for the same

geometry as in the previous case, only here the ground impedance has

increased by a factor of 10. Immediately apparent is the fact that

the overall attenuation is lower for the harder ground. Actually, as

was the trend in the ground propagation studies in the previous

section, the attenuation peak has shifted to higher values of kR.

Also apparent is that the plane wave predictions are closer to the Q-

term predictions (maximum deviation 5 dB, as opposed to 28 dB in

Figure 4.18). This is not surprising since the influence of ground

absorption diminishes as the ground impedance increases. Again, if

the ground impedance were increased continuously, the two solutions

would eventually give identical results.

Unlike the case for the soft ground, the insertion loss in Figure

4.19 (b) is appreciable at high frequencies. This is because the loss

due to simple propagation would not be significant over this ground,

so the "shadowing" effects of the barrier appear stronger by

comparison.

The attenuation and insertion loss curves presented next in

Figures 4.20 and 4.21 show some preliminary effects of increasing the

barrier height (this dependence will be discussed in detail in the

next section). All parameters are the same as those in Figures 4.18

and 4.19, respectively, only the barrier height is now 8.0 feet

instead of 1.0 feet. For either impedance considered, the range of kR

for which the plane wave solution is in accord with the Q-term
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solution begins at a lower value for the higher barrier. That is, for

-ZN - (1.5, 2.0), the 1-foot barrier dictates kR > 700 for agreement,

whereas the 8-foot barrier requires kR> 50. For ZN - (15.0, 20.0), a

large kR is still necessary for the 1-foot barrier, but the solutions

for the 8-foot case are very close down to kR - 10.

Comparing Figure 4.21 with Figure 4.19 shows the expected result

that the higher barrier provides the greater attenuation.

Mathematically, this is a result of the diffraction coefficient taking

smaller values as the receiver moves deeper Into the shadow zone. For

soft grounds, however, a counteracting effect takes place as the

barrier height increases. The reflection angles of the source-ground-

barrier path and the barrier-ground-receiver path increase, and hence

the "strength" of the ground-reflected rays gets larger. The net

result can be seen most clearly when Figure 4.18 is compared to Figure

4.20 (attenuation or insertion loss). The attenuation is higher for

the 8-foot barrier for kR less than about 50, but the attenuation is

generally lower for kR above that. Apparently, then, the "diffraction

effect" Is the primary factor at the lower values of kR, while the

"impedance effect" dominates at the higher values.

When both the source and receiver are raised above the ground to

heights of 7.2 feet and 7.1 feet, respectively, the data plotted in

Figure 4.22 result. Since the geometry chosen here defines

diffraction angles 00 and 0 equal to those for the case in Figure

4.18, the differences between the two sets of data are due entirely to

the presence of the ground (the half-plane curve is identical for the

-. .,. . - .. .. .."- - , m mmm. d m ., m ma, , m. m - - -,m
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two geometries). The barrier is at 8.0 feet and the ground impedance

Is ZN M (1.5, 2.0). The first 1_1c in the attenuation is due to the

ground impedance; it occurs at a low value of kR because the

reflection angles are now large (recall the trend noted in Section

4.1.1 that as *j increased, the peak shifted to lower kR). The series

of peaks and troughs for kR > 10 are due to path length interferences

among the four ray paths considered in the Edge-Plus-Images model.

Besides the fact that the plane wave solution is valid here for kR

larger than 10, the interesting feature of the graph is that the half-

plane solution seems to predict the "average" attenuation.

The next series of graphs, Figures 4.23 - 4.24 show the effects

of having different impedances on each side of the barrier. For all

four cases, the source height is5 0.25 feet; the receiver height is 8.0

feet; the source and receiver are 60.0 feet from the barrier; and the

barrier is 15.0 feet high. The geometry is realistic for a practical

highway noise barrier problem. First, the data for a hard (Z N

[100.0, 150.0]) ground beneath both source and receiver is plotted in

Figure 4.23 (a) (plane wave and Q-term, solutions only). For such a

high impedance, both solutions are accurate. When the ground on the

receiver side is assigned a constant impedance Z 2 - (2.0, 2.5), the

data in Figure 4.23 (b) result. The overall attenuation is increased

at lower frequencies as the first peak in Figure 4.23 (a) shifts to

the left; also, the solutions begin to show differences. The effect

* ~. of the impedance at high frequencies is simply to "smooth" the peaks

an troughs, as the average attenuation changes little.
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If the soft ground were located under the source instead of the

receiver, Figure 4.24 (a) would describe the resulting attenuation.

This shows several noteworthy features. First, the entire curve is

shifted up relative to the hard-ground case in Figure 4.23 (a).

Second, the first peak of attenuation centered at about kR-100 does

not shift; and third, there is no smoothing of the high-frequency

* peaks (although the average is now higher). All of these results are

due to the fact that, unlike the receiver, the source is very close

to the ground and the propagation is at near-grazing angles, resulting

in higher losses. Since the "incident" field at the barrier edge is

reduced by the source ground impedance layer, the entire pattern of

receiver-side interference is shifted upward but not changed in

character. Finally, when the ground on both sides is soft, as in

Figure 4.24(b), the effects are cumulative: an overall increase in

attenuation, a shifting ol the first peak, and a smoothing of the

interference peaks.

To conclude this section, a case for which the incident ray

strikes the barrier edge obliquely will be investigated. The geometry

is the same as in the previous case except that z 0 -100 (Figure 4.17

[b]), giving an angle ~ 500. The ground impedance is Z N - (100.0,

150.0). Figure 4.25 shows the resulting attenuation, with the results

of Figure 4.23 (a) superimposed for comparison. Since a factor of

sino appears in the denominator of the diffraction coefficient given

in EqV~tion (3.4), the coefficient itself increases as the angleB

decreases. The numerical predictions thus indicate a lower
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attenuation for the oblique incidence case. As this is not a ground-

u related effect, the half-plane solution (long-dashed line) predicts

the same trend.

The geometry and impedance conditions for the plots presented in

this section are summarized in Table 4.6.

4.2.2 The Dependence on Barrner Height

Half-plane diffraction theory predicts the simple formula for

fixed source and receiver positions: the greater the barrier height,

the greater the attenuation. While this is generally true in

practice, consideration of the ground reflections and impedance

conditions greatly affects the predicted attenuation, and sometimes

leads to unexpected results.

The data plotted in Figures 4.26 and 4.27 compare the predicted

attenuation and insertion loss for a soft (ZNMfl.5, 2.0]) ground with

that for a relatively hard (Znm [15.0, 20.0]) ground. The source and

reciver are close to the surface (0.5 feet) and relatively far from

the barrier (60 feet), and kR is assigned a small value (5.0). The

barrier height ranges from 0.1 to 25 feet. Several observations can

be made. First, the low value of kR is responsible for the large

differences between the plane wave solution and the Q-term solution.

Even when the barrier is at maximum height (the ground reflection

angles are near 25 0), there remains a 7 dB difference for the low-

impedance case and a 1 dt difference for the higher-impedance case.

Second, the overall effects of diffraction are minimal on the cQ-term
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predictions as the insertion loss is close to zero over most of the

* range of barrier height. This is simply a consequence of the very low

frequencies being considered here.

Figures 4.28 and 4.29 show data for the same geometry as above,

but here the value of kR has been increased by a factor of ten to

kR-50. The plane wave and Q-term solutions are more in accord here.

In fact, for barrier heights above 12 feet the predictions are within

1 dB for either impedance condition. The fact that a broad peak in

attenuation appears for the soft ground and not for harder ground

indicates that this is an "impedance effect" similar to that noticed

in previous ground propagation curves.

The two insertion loss curves in Figures 4.28 (b) and 4.29 (b)

reveal an interesting trend that was noted in the previous section.

That is, the insertion loss is near zero for high barriers on the soft

ground, while it steadily increases with height for barriers on the

harder ground. In fact, for the soft ground, the insertion loss shows

a steady decline (Figure 4.28 [b]) for heights above 4 feet;

therefore, increasing the barrier height beyond this value would be

counterproductive (in the noise control sense).

* The counteracting impedance and diffraction effects mentioned in

the previous section, are apparent in the next pair of graphs. In

Figure 4.30 (a) and (b), the source and receiver have been raised

above the ground to heights of 4 feet, but all other conditions are

the same as in the previous curves. For the case where ZN = 15

2.0), the attenuation stays relatively constant as the barrier height
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increases. On the other hand, each ray path in the Edge-Plus-Images

model (Figure 3.4) should experience a trend similar to that shown by

the single-ray half-plane diffraction solution plotted on the same

graph. That is, each of the four paths is attenuated more heavily as

the barrier height increases. However, the strength of each ground-

reflected path gets larger as the reflection angle increases

(approximately, from 40 to 250 over the range of barrier heights).

This effect offsets the increase in attenuation due to diffraction.

Finally, it can be seen that this phenomenon does not occur for the

harder (ZN-[1OO.O, 150.01) ground shown in Figure 4.30 (b); the

* impedance effect is not pronounced since the ground appears hard

throughout the range of reflection angles. Thus, the attenuation

steadily increases with barrier height.

To conclude this section, two additional sets of curves are

presented in Figures 4.31 and 4.32 for large values of kR. The

parameter values are indicated on the graphs. Essentially, both plots

are for soft ground but the former has the receiver well above the

ground while the latter has it very close to the ground. The plane

wave solution is accurate in either case over the full range of

barrier heights. Other important observations are that path length

interference effects are present for the elevated receiver, and that

the insertion loss is negative when the source and receiver are near

the ground.

Table 4.7 presents a summary of the geometrical and impedance

conditicas for the numerical results plotted in this section.
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4.2.3 Dependence on Diffraction Angle

The diffraction angle defined in Figure 4.17 naturally depends

on the barrier height and the receiver position. Consequently, many

observations regarding the dependence of the field on P have already

been, or can be, made from the numerical data presented thus far.

However, for completeness, several cases will be presented here

showing this dependence explicitly.

The numerical data predicted from the plane wave, Q-term, and

half-plane-theories for a source 0.2 feet above the ground and a

barrier of height 5.0 feet are plotted in Figures 4.33 - 4.36.

Sequentially, the graphs show a small kR coupled with a low or a high

ground impedance, and a large kR with a low or a high ground

impedance. In these plots, the receiver distance from the edge, R,

is held constant as the angle $ is varied. Consequently, the receiver

revolves about the the edge paint E, moving from Its starting point on

the ground behind the barrier (0 maximum) to its final position

directly above the edge (~-00). At some point in this angular

range, the receiver will cross the incident shadow boundary and pass

into the illuminated region of the source. For the geometry

considered here, the shadow boundary from the source occurs at 69.2,

and this value ('Dsb) is marked by a vertical line on the graphs.2

29 The values marked on the axis for the angle 'are actually

absolute values; the cylindrical coordinate system used in the
development of the model -iefine the angle to be negative on the
receiver side of the barrier.
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The only significant differences between the plane wave and the

Q-term predictions (for this particular barrier height) are for the

low-impedance (ZN=[1.5,2.0]), small kR (kR-5.0) case. shown in Figure

4.33. For the distances considered here (R-24.0), this value of kR

corresponds to a frequency of 37 Hz., and it is very unlikely that any

practical material (in air) would possess such a low impedance at this

low frequency. The cases with a low value of kR show a broad peak in

the attenuation or insertion loss response, whereas the cases with the

higher value of kR show the expected steady decline as the receiver

approaches the incident shadow boundary. It is interesting to note

that for the large kR case, the simple half-plane diffraction model

overpredicts the attenuation for the hard ground and underpredicts it

for the soft ground.

Some further comments about the shadow boundary may be

appropriate here. It is well known that the presence of the Fresnel

Integrals in the diffraction coefficient (Equation [3.4]), ensures

that the diffracted field is continuous across the shadow boundary.

The numerical data plotted here confirm this fact; no abrupt changes

occur in either the attenuation or insertion loss data in the vicinity

of the shadow boundary. It is also well known that the diffracted

field at the shadow boundary itself (for large kR) assumes a value

one-half that of the incident field there. This, of course, applies

to the diffraction of a single ray only. Therefore, the data in

.4, Figures 4.35 (a) and 4.36 (a) show a 6 dB attenuation for the half-

plane predictions but a different value when the ground is taken into

account (the plane-wave or Q-term data).
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4 As mentioned in the description of the Edge-Plus-Images model in

Chapter 3, the source image In the ground also defines its own shadow

boundary. That is, there is a "shadow" and an "Illuminated" region

for the reflected acoustic energy as well as for the direct energy

from the source. As the angle * decreases, the receiver may also

cross this "image shadow boundary," but, again, there should be no

discontinuity in the predicted levels. ThI. &as again confirmed by the

data, since the shadow boundary for the image source occurs within a

* few degrees of the incident shadow boundary shown on the graphs.

The relevant parameters for the plots in this section are

summarized In Table 4.8.

4.2.4 Received Spectra for a Practical Ground Cover

As noted in Section 4.1.3, the ground impedance is rarely

constant over a wide range of frequency values. Therefore, as a

practical example, the Edge-Plus-Images prediction model has been

applied to a barrier on a ground plane characterized by the third-

octave values of impedance given in Table 4.3. The source and

receiver are very close to the ground (0.25 feet), and the barrier

height Is 15.0 feet.

The data plotted in Figure 4.37 are for a perfectly rigid ground.

Of course, the plane wave and Q-term solutions are identical, both

Indicating an attenuation that gradually increases with frequency

(diffraction coefficient decreasing with Increasing kR) until a sharp

peak due to ground reflection interference (path length difference) is
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reached. The insertion loss follows this trend exactly. When the

ground is grass-covered, the data in Figure 4.38 is generated. An

important feature here is that the plane wave solution remains valid

even for very low kR. This can be explained with reference to Table

4.3, where it can be seen that for low frequencies, the impedance is

rather high. This tends to counteract any "low kR" differences

between the plane wave and Q-term solutions.

As has been observed in previous cases, the attenuation shows a

broad peak in the response for the impedance-covered ground. However,

Figure 4.38 (b) shows that the corresponding insertion loss drops

rapidly in this region. Again, the barrier is "preventing" the large

grazing-incidence propagation loss to take place over the soft ground.

As a final exercise, a case has been analyzed in which

significant differences do exist between the plane wave and Q-term

predictions, in spite of the high impedances at low kR values. That

is, the barrier height has been reduced (Bht-0.5 feet) to force near-

grazing incidence for the ground reflected rays. The numerical data

are plotted in Figure 4.39 (a) and (b), where the plane wave solution

Is seen to be up to 30 dB inaccurate. This configuration of source,

receiver, and barrier is certainly not representative of noise control

applications, but it is interesting to note the single sharp peak in

the Insertion loss spectra.

Data for a variety of cases have been presented in this chapter,

mainly to illustrate some key differences between the classical plane
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wave solution to the propagation problem and the more exact spherical

wave solution. A secondary motivation was to collect a large sample

of data for future reference. In view of the many parameters

*' involved, this same data could provide much more information than has

been presented here. Furthermore, numerical results for either the

ground propagation solution or the Edge-Plus-Images model are

relatively easy to generate with a digital computer, and so a

* particular feature or trend in any one plot could be investigated in

detail, if desired.

4.
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CHAPTER V

SUMARY AND CONCLUSIONS

The primary objective of the research behind this study was to

derive a more exact analytical solution to the problem of point source

propagation over an impedance plane. This goal has been met in

obtaining the asymptotic solution described in Chapter 2. A second

objective was to incorporate the new solution into a barrier model

that would account for ground reflections in addition to diffraction.

This was also accomplished, and the so-called Edge-Plus-Images model

discussed in Chapter 3 was developed.

5.1 Summary

The mathematical problem was formulated as a boundary value

problem, in terms of the acoustic Helmholtz equation in cylindrical

coordinates (Equation [2.181) and the local reaction boundary

conditious (Equation [2.40]). Using Rankel Transforms, an Integral

solution was obtained (Equation [2.48]) which contained a pole and a

branch point. The pole was replaced by an equivalent Integral

(Equation [2.51]), and the resulting double Integral was foud to

contain a term resembling the Sommerfeld representation for a point

source. The double integral thus reduced to the single Integral given

by Equation (2.57).

The major part of the research effort was directed toward

evaluating the integral in Equation (2.57). Other researchers have
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F' arrived at similar integrals when studying this problem anr have

invoked such asymptotic techniques as the method of steepest descents

for its evaluation. The approach used in this study was to apply the

variable transformation given by Equation (2.60) to the integrand. In

this manner, the complicated exponential was reduced to a relatively

simple polynomial expression. The remainder of the integrand was

transformed using standard techniques, and the final real-axis

integral given in Equation (2.93) was obtained.

Since the transformed integral is still intractable due to the

square root function in the denominator, a Taylor series expansion of

the latter was sought and obtained (Equation [2.95]). The important

thresult here is that a general expression for the n Taylor

coefficient was derived, making available (computationallv) as many

terms in the series as might be desired or necessary. This expansion

of the denominator allowed the original integral in Equation (2.93) to

be written as an infinite sum of integrals as in Equation (2.105).

TV' sum is an asymptotic series in the parameter "kR2. ,

The final step in the formal derivation was to perform the term-

by-term integration, that is, to evaluate the component integrals in

the asymptotic series. Each integral was resolved in terms of

parabolic cylinder functions (Equation [2.106]), which in turn were

* expressed in terms of the complex complementary error function. From

the perspective of this study, the most Important feature of the

parabolic cylinder functions was found to be their recursive nature.

Specifically, the recursion relations for the parabolic cylinder
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functions led directly to recursion relations for the integral terms

In the asymptotic series (Equations [2.1171 - [2.119]). Thus, the

final result of the mathematical derivation, the closed-form

asymptotic series given by Equation (2.123) or (2.128), was obtained.

The formal solution was then re-phrased in several useful forms.

The "Q-term" form in Equation (2.129), with Q defined by Equation

(2.135), lends a physical Interpretation. Namely, the quantity Q

could be thought of as a "spherical wave reflection coefficient,"

since the equation in this form is analogous to that employing the

classical plane wave reflection coefficient (Equation (2.5]). The Q-

K term form of solution is preferred here; for reference, it is re-

stated in Figure 5.1. The "F-term" form given by Equation (2.137),

with F defined by Equation (2.141), presents the solution as one

containing a "correction" term for the classical plane wave solution.

The form of the solution given in Section 2.3.5.4 shows that the

Hankel function can be extracted from the asymptotic series (other

researchers have generated approximate solutions containing the Hankel

function). Finally, a form of solution using on1ly the first term in

the asymptotic series was presented in Section 2.3.5.5.

For the case of perpendicular incidence (sin P - 1.0), an exact

solution was derived in terms of the exponential integral (Equation

[2.158]). Small- and large-argument expansions for the exponential

integral were available and are given by Equations (2.156) and

(2.157), respectively. It was found that the solution using the first

term in the latter expansion is identical to the plane wave solution

for this case.
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The next phase of the research was directed toward incorporating

fl the ground propagation solution into a barrier diffraction model.

Following a brief review of the underlying diffraction concepts In

Section 3.1, the principal result of this phase--the so-called Edge-

Plus-Images model--is described in Section 3.2. The model is

constructed using four separate half-plane diffracted ray paths. That

is, a direct-diffracted ray, a reflected-diffracted ray, a diffracted-
!..

reflected ray, and a reflected-diffracted-reflected ray (Figure 3.4)

are combined coherently, and the ground-reflected rays are6.

appropriately modified by the spherical wave reflection coefficient.

A large quantity of numerical data generated from the ground

propagation solution and from the Edge-Plus-Images diffraction model

was analyzed next. The dependence of the predictions on several

important parameters was Investigated in Chapter 4 in a comprehensive

series of graphs. For the ground propagation section, the dependence

on the parameter kR, the reflection angle W, and the ground impedance

ZN was studied, and for the barrier section, the influence of barrier

height and diffraction angle * was studied in addition.

5.2 Conclusions

In the discussion of the numerical results from both the

propagation solution and the barrier diffraction model, many specific

observations of trends and features in the data were pointed out.

Here, several general conclusions will be drawn and discussed.
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The asymptotic series solution is very accurate. The only

noticeable difference between the data predicted from the asymptotic

series solution and the data from the numerical integration of the

exact solution occurred at very low values of kR. Deviations in this

region are expected, but the surprising fact is that these deviations

cease to exist for values of kR that are still relatively small. For

example, Figure 4.1 shows no difference between the exact and

asymptotic solutions for kR down to a value kR-3. And Figure 4.2

shows only 0.25 difference for kR.01. Re-examining the integrand

trends presented in Figure 2.7 (a), (b), and (c) might provide some

insight into why this is possible. For the low kR values cited here,

the integrand will show significant asplitudes outside the radius of

curvature of the Taylor seriei (ta). Presumably, then, the

oscillatory nature of the integrand prevents any net contribution to

the integral for all but the smallest values of t (for which the

Taylor series is convergent).

The first term in the asymptotic series usually provides

sufficient accuracy. For the geometries and impedance conditions

considered in this study, the maximum deviation between the F-term

(that is, F1 from Equation (2.150]) solution and the full series

solution can be seen in Figure 4.3. Here, a 3 dB deviation exists

over a wide range of kR. However, this is an extreme case (grazing

*incidence, very soft ground), and a more typical behavior (Figures 4.5

and 4.6, for example) shows agreement with the exact solution for

larger kR and only one or two dB deviation for small kR. It is
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interesting to note that for extremely small kR, the solution using

only the first term in the asymptotic series may give more accuracy

than the solution using more terms-these terms are probably diverging

here-as can be seen in Figures 4.1 (b) or 4.3, for example.

The magnitude of the difference between the solution using the

first term only and that using the full series is highly dependent on

the .values of the parameters kR, Z N, and p. The effects of these

parameters'are inter-related, and it is difficult to determine which

Is the "controlling" factor. The ground impedance seems to have a

very strong influence. That is, even for relatively large IcR and

large J, a small value for Z Nwill still produce deviations (for

instance, in Figure 4.8 (b]).

The simple plane wave solution may be accurate over a wide range

of parameter values. It is definitely Inaccurate for small values of

all three parameters and definitely accurate for large values of all

three. No general rule can be stated for intermediate values, yet the

numerical data in Chapter 4 may serve as a guide.

The ground reflections must be taken into account when

considering diffraction by a barrier. For all the cases considered

here, the half-plane prediction curve (diffraction alone) was

significantly inaccurate, even for very practical geometries and

impedance conditions. The only possible exception to this conclusion

is the case where the source and receiver are well above the ground,

for which the half-plane theory seems to predict the "average"*

attenuation through the interference maxima and minima (Figure 4.25).
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The range of validity of the plane wave solution is great when a

barrier is present. This Is because of the larger ground relfection

angles. The Edge-Plus-Images model may only require the use of the

more-exact spherical wave reflection coefficient for very short

barrier heights, source and receiver near the ground, and a relatively

low ground Impedance. Practical cases (in outdoor noise control, at

least) show very little difference between the solutions (Figures 4.43

and 4.44).

5.3 Suggestions for Further Research

From the mathematical standpoint, more rigor could be applied to

several points in the derivation of the ground propagation solution.

An investigation of the convergence of the asymptotic series, and a

more thorough treatment of the branch cuts and their dependence on the

angle and the admittance could be made. For the Edge-Plus-Images

model, the diffraction coefficient could be adapted to other types of

barriers, such as wedges, trapezoids, or parallel edges.

An expanded series of sensitivity tests could also be undertaken

to determine more precise relationships among the parameters. In

addition, numerical data for the absorptive barrier might be generated

and compared to the rigid barrier.

Finally, it may be interesting to apply the theoretical results

of the present study to other fields such as underwater acoustics,

seismology, or electromagnetics, for which certain values of the

parameters kR and ZN considered "unrealistic" in air acoustics might

te more natural.
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